Câu hỏi:

23/09/2024 8,571

Một hộp chứa 5 viên bi xanh và 4 viên bi đỏ có cùng kích thước và khối lượng. Bạn Hải lần lượt lấy từng viên bi ra khỏi hộp một cách ngẫu nhiên cho đến khi lấy được bi xanh thì dừng lại. Viên bi lấy ra không được cho lại vào hộp. Tính xác suất của biến cố Hải lấy được bi xanh ở lần lấy bi thứ 3 (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: \({\bf{0}},{\bf{08}}.\)

Gọi Ak là biến cố Hải lấy được bi xanh ở lần lấy bi thứ k. Ta có xác suất của biến cố Hải lấy được bi xanh ở lần lấy bi thứ 3 là

\({\rm{P}}\left( {{\rm{A}}3} \right) = {\rm{P}}\left( {{\rm{A}}3\overline {\rm{A}} 2\overline {\rm{A}} 1} \right) = {\rm{P}}\left( {\overline {\rm{A}} 1} \right){\rm{P}}\left( {\overline {\rm{A}} 2\mid \overline {\rm{A}} 1} \right){\rm{P}}\left( {{\rm{A}}3\mid \overline {\rm{A}} 2{{\overline {\rm{A}} }_1}} \right) = \frac{4}{{10}} \cdot \frac{3}{9} \cdot \frac{5}{8} = \frac{1}{{12}} \approx 0,08.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 0,38.

Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.

Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\)\({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)

Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là

\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)

\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)

Lời giải

Đáp số: 602.

Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.

Ta có:

\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)

Đặt \(P(M) = p.\) Ta có:

\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)

\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)

\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)

\({\rm{p}} = \frac{1}{{601}}.\)