Câu hỏi:
23/09/2024 5,193
Tỉ lệ mắc bệnh Z trong cộng đồng là \(10\% .\) Một xét nghiệm nhanh TZ cho kết quả dương tính với \(90\% \) các ca mắc bệnh Z. Một khảo sát cho thấy có \(60\% \) trong những người có kết quả xét nghiệm nhanh TZ dương tính thực sự mắc bệnh Z. Một người làm xét nghiệm và có kết quả âm tính, tính xác suất người đó thực sự không mắc bệnh Z (làm tròn kết quả đến hàng phần trăm).
Tỉ lệ mắc bệnh Z trong cộng đồng là \(10\% .\) Một xét nghiệm nhanh TZ cho kết quả dương tính với \(90\% \) các ca mắc bệnh Z. Một khảo sát cho thấy có \(60\% \) trong những người có kết quả xét nghiệm nhanh TZ dương tính thực sự mắc bệnh Z. Một người làm xét nghiệm và có kết quả âm tính, tính xác suất người đó thực sự không mắc bệnh Z (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Đáp số: 0,99.
Gọi A là biến cố người làm xét nghiệm thực sự mắc bệnh Z và H là biến cố kết quả xét nghiệm là dương tính.
Ta có: \({\rm{P}}({\rm{A}}) = 0,1;{\rm{P}}({\rm{H}}\mid {\rm{A}}) = 0,9;{\rm{P}}({\rm{A}}\mid {\rm{H}}) = 0,6.\)
Ta có: \({\rm{P}}({\rm{AH}}) = {\rm{P}}({\rm{H}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) = 0,09\); và \({\rm{P}}({\rm{H}}) = \frac{{{\rm{P}}({\rm{AH}})}}{{{\rm{P}}({\rm{A}}\mid {\rm{H}})}} = \frac{3}{{20}}.\)
Hơn nữa \({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{H}} ) = {\rm{P}}(\overline {{\rm{A}} \cup {\rm{H}}} ) = 1 - {\rm{P}}({\rm{A}} \cup {\rm{H}}) = 1 - ({\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{H}}) - {\rm{P}}({\rm{AH}})) = \frac{{21}}{{25}}.\)
Do đó xác suất người đó thực sự không mắc bệnh Z biết rằng người đó có kết quả xét nghiệm âm tính là
\({\rm{P}}(\overline {\rm{A}} \mid \overline {\rm{H}} ) = \frac{{{\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{H}} )}}{{{\rm{P}}(\overline {\rm{H}} )}} = \frac{{21}}{{25}}:\frac{{17}}{{20}} = \frac{{84}}{{85}} \approx 0,99.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 0,38.
Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.
Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\) và \({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)
Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là
\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)
\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)
Lời giải
Đáp số: 602.
Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.
Ta có:
\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)
Đặt \(P(M) = p.\) Ta có:
\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)
\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)
\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)
\({\rm{p}} = \frac{1}{{601}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.