Câu hỏi:

23/09/2024 3,149

Hai bạn Tài và Đức mỗi người thực hiện một thí nghiệm một cách độc lập với nhau. Xác suất thực hiện thành công thí nghiệm của Tài và Đức lần lượt là 0,6 và 0,7. Biết rằng có ít nhất một người thực hiện thành công thí nghiệm, tính xác suất của biến cố có đúng một trong hai người thực hiện thành công thí nghiệm (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 0,52.

Gọi T là biến cố bạn Tài thực hiện thành công thí nghiệm; D là biến cố bạn Đức thực hiện thành công thí nghiệm. Ta có \(P(T) = 0,6;P(D) = 0,7.\)

\({\rm{T}} \cup {\rm{D}}\) là biến cố có ít nhất một người thực hiện thành công thí nghiệm và \(\bar TD \cup T\bar D\) là biến cố có đúng một người thực hiện thành công thí nghiệm.

Ta có: \({\rm{P}}({\rm{T}} \cup {\rm{D}}) = 0,6 + 0,7 - 0,6.0,7 = 0,88\)

\({\rm{P}}(\overline {\rm{T}} {\rm{D}} \cup {\rm{T}}\overline {\rm{D}} ) = {\rm{P}}(\overline {\rm{T}} {\rm{D}}) + {\rm{P}}({\rm{TD}}) = 0,4.0,7 + 0,6.0,3 = 0,46.\)

Xác suất cần tính là

\({\rm{P}}(\overline {\rm{T}} {\rm{D}} \cup {\rm{T}}\overline {\rm{D}} \mid {\rm{T}} \cup {\rm{D}}) = \frac{{{\rm{P}}(\overline {\rm{T}} {\rm{D}} \cup {\rm{T}}\overline {\rm{D}} )}}{{{\rm{P}}({\rm{T}} \cup {\rm{D}})}} = \frac{{23}}{{44}} \approx 0,52\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 0,38.

Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.

Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\)\({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)

Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là

\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)

\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)

Lời giải

Đáp số: 602.

Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.

Ta có:

\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)

Đặt \(P(M) = p.\) Ta có:

\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)

\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)

\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)

\({\rm{p}} = \frac{1}{{601}}.\)