Câu hỏi:
23/09/2024 2,152Một hộp chứa 8 tấm thẻ cùng kích thước, trong đó có 1 thẻ may mắn. Các bạn An, Bi, Cá, Du lần lượt mỗi người lấy ra ngẫu nhiên 2 thẻ từ hộp cho đến khi lấy được thẻ may mắn. Thẻ đã lấy ra không được trả lại hộp. Tính xác suất của biến cố Cá lấy được thẻ may mắn.
Quảng cáo
Trả lời:
Đáp số: \({\bf{0}},{\bf{25}}.\)
Gọi \({\rm{A}},{\rm{B}},{\rm{C}}\) lần lượt là biến cố \({\rm{An}},{\rm{Bi}}\) và Cá lấy được thẻ may mắn.
Xác suất của biến cố Cá lấy được thẻ may mắn là
\({\rm{P}}({\rm{C}}) = {\rm{P}}({\rm{C}}\overline {\rm{B}} \overline {\rm{A}} ) = {\rm{P}}(\overline {\rm{A}} ){\rm{P}}(\overline {\rm{B}} \mid \overline {\rm{A}} ){\rm{P}}({\rm{C}}\mid \overline {\rm{B}} \overline {\rm{A}} ) = \frac{{{\rm{C}}{7^2}}}{{{\rm{C}}{8^2}}} \cdot \frac{{{\rm{C}}{5^2}}}{{{\rm{C}}{6^2}}}\left( {1 - \frac{{{\rm{C}}{3^2}}}{{{\rm{C}}{4^2}}}} \right) = \frac{1}{4} = 0,25\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 0,38.
Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.
Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\) và \({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)
Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là
\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)
\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)
Lời giải
Đáp số: 602.
Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.
Ta có:
\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)
Đặt \(P(M) = p.\) Ta có:
\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)
\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)
\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)
\({\rm{p}} = \frac{1}{{601}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận