Câu hỏi:

23/09/2024 2,273 Lưu

Một hộp chứa 8 tấm thẻ cùng kích thước, trong đó có 1 thẻ may mắn. Các bạn An, Bi, Cá, Du lần lượt mỗi người lấy ra ngẫu nhiên 2 thẻ từ hộp cho đến khi lấy được thẻ may mắn. Thẻ đã lấy ra không được trả lại hộp. Tính xác suất của biến cố Cá lấy được thẻ may mắn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: \({\bf{0}},{\bf{25}}.\)

Gọi \({\rm{A}},{\rm{B}},{\rm{C}}\) lần lượt là biến cố \({\rm{An}},{\rm{Bi}}\) và Cá lấy được thẻ may mắn.

Xác suất của biến cố Cá lấy được thẻ may mắn là

\({\rm{P}}({\rm{C}}) = {\rm{P}}({\rm{C}}\overline {\rm{B}} \overline {\rm{A}} ) = {\rm{P}}(\overline {\rm{A}} ){\rm{P}}(\overline {\rm{B}} \mid \overline {\rm{A}} ){\rm{P}}({\rm{C}}\mid \overline {\rm{B}} \overline {\rm{A}} ) = \frac{{{\rm{C}}{7^2}}}{{{\rm{C}}{8^2}}} \cdot \frac{{{\rm{C}}{5^2}}}{{{\rm{C}}{6^2}}}\left( {1 - \frac{{{\rm{C}}{3^2}}}{{{\rm{C}}{4^2}}}} \right) = \frac{1}{4} = 0,25\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 0,38.

Gọi A là biến cố tích hai số ghi trên hai thẻ chia hết cho 2 và B là biến cố tích hai số ghi trên hai thẻ chia hết cho 3.

Ta có \({\rm{P}}(\overline {\rm{A}} ) = \frac{2}{9};{\rm{P}}(\overline {\rm{B}} ) = \frac{7}{{15}}\)\({\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} ) = \frac{1}{{15}}.\)

Do đó xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 là

\({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 1 - {\rm{P}}(\overline {{\rm{A}} \cap {\rm{B}}} ) = 1 - {\rm{P}}(\overline {\rm{A}} \cup \overline {\rm{B}} ) = 1 - {\rm{P}}(\overline {\rm{A}} ) - {\rm{P}}(\overline {\rm{B}} ) + {\rm{P}}(\overline {\rm{A}} \cap \overline {\rm{B}} )\)

\( = 1 - \frac{2}{9} - \frac{7}{{15}} + \frac{1}{{15}} = \frac{{17}}{{45}} \approx 0,38\)

Lời giải

Đáp số: 602.

Gọi CB là biến cố trang web bị cảnh báo; M là biến cố trang web chứa mã độc.

Ta có:

\({\rm{P}}({\rm{CB}}\mid {\rm{M}}) = 0,99;{\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) = 0,001;{\rm{P}}({\rm{M}}\mid {\rm{CB}}) = 0,66.\)

Đặt \(P(M) = p.\) Ta có:

\({\rm{P}}({\rm{M}}\mid {\rm{CB}}) = \frac{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}})}}{{{\rm{P}}({\rm{CB}}\mid {\rm{M}}) \cdot {\rm{P}}({\rm{M}}) + {\rm{P}}({\rm{CB}}\mid \overline {\rm{M}} ) \cdot {\rm{P}}(\overline {\rm{M}} )}}\)

\( \Leftrightarrow \frac{{0,99 \cdot {\rm{p}}}}{{0,99 \cdot {\rm{p}} + 0,001(1 - {\rm{p}})}} = 0,66.\)

\(3{\rm{p}} = 2(0,899{\rm{p}} + 0,001)\)

\({\rm{p}} = \frac{1}{{601}}.\)