Câu hỏi:
23/09/2024 68Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp số: 16.
Gọi k là số kết quả thuận lợi cho A thì k có thể nhận các giá trị từ 0 đến 10 !.
Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{{\rm{k}}}{{10{\rm{ ! }}}}\) Nên \({\rm{P}}({\rm{A}})\) có dạng \(\frac{1}{{\;{\rm{m}}}}\) khi và chỉ khi m là ước của 10 !.
Trong các số từ 1 đến 20 chỉ có các số 11,13,17,19 không là ước của 10 ! Nên \({\rm{P}}({\rm{A}})\) có thể nhận \(20 - 4 = 16\) giá trị khác nhau thuộc tập hợp \(\left\{ {\frac{1}{1};\frac{1}{2}; \ldots ;\frac{1}{{20}}} \right\}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hộp chứa 10 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 10. Bạn Cường lấy ra đồng thời 2 tấm thẻ từ hộp. Tính xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 (làm tròn kết quả đến hàng phần trăm).
Câu 2:
Bạn Vân tham gia một cuộc thi về khoa học xã hội. Bộ câu hỏi của cuộc thi gồm 10 câu hỏi lịch sử và 15 câu hỏi địa lí. Xác suất Vân trả lời đúng một câu hỏi lịch sử là 0,6 và một câu hỏi địa lí là 0,8. Vân chọn ngẫu nhiên 1 câu hỏi trong bộ câu hỏi. Biết rằng Vân trả lời đúng câu hỏi đó, tính xác suất để đó là câu hỏi lịch sử (làm tròn kết quả đến hàng phần trăm).
Câu 3:
Một hộp chứa 5 viên bi xanh và 4 viên bi đỏ có cùng kích thước và khối lượng. Bạn Hải lần lượt lấy từng viên bi ra khỏi hộp một cách ngẫu nhiên cho đến khi lấy được bi xanh thì dừng lại. Viên bi lấy ra không được cho lại vào hộp. Tính xác suất của biến cố Hải lấy được bi xanh ở lần lấy bi thứ 3 (làm tròn kết quả đến hàng phần trăm).
Câu 4:
Tỉ lệ mắc bệnh Z trong cộng đồng là \(10\% .\) Một xét nghiệm nhanh TZ cho kết quả dương tính với \(90\% \) các ca mắc bệnh Z. Một khảo sát cho thấy có \(60\% \) trong những người có kết quả xét nghiệm nhanh TZ dương tính thực sự mắc bệnh Z. Một người làm xét nghiệm và có kết quả âm tính, tính xác suất người đó thực sự không mắc bệnh Z (làm tròn kết quả đến hàng phần trăm).
Câu 5:
Hai bạn Tài và Đức mỗi người thực hiện một thí nghiệm một cách độc lập với nhau. Xác suất thực hiện thành công thí nghiệm của Tài và Đức lần lượt là 0,6 và 0,7. Biết rằng có ít nhất một người thực hiện thành công thí nghiệm, tính xác suất của biến cố có đúng một trong hai người thực hiện thành công thí nghiệm (làm tròn kết quả đến hàng phần trăm).
Câu 6:
Bạn Thuỷ lần lượt bỏ một cách ngẫu nhiên 8 viên bi cùng loại vào 3 chiếc hộp màu xanh, đỏ, vàng. Mỗi hộp có thể chứa từ 0 đến 8 viên bi. Tính xác suất của biến cố có một hộp chứa 4 viên bi, hai hộp còn lại, mỗi hộp chứa 2 viên bi (làm tròn kết quả đến hàng phần trăm).
Câu 7:
Bạn Duy xếp 4 viên bi xanh, 5 viên bi đỏ vào 3 chiếc hộp một cách ngẫu nhiên sao cho mỗi hộp có đúng 3 viên bi. Tính xác suất để hộp nào cũng có bi xanh (làm tròn kết quả đến hàng phần trăm).
về câu hỏi!