Câu hỏi:

23/09/2024 754

Có hai hộp đựng bi. Hộp thứ nhất có 4 viên bi xanh và 2 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 6 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Bạn Nam chọn ngẫu nhiên một viên bi từ hộp thứ nhất, bỏ vào hộp thứ hai rồi chọn ra ngẫu nhiên 2 viên bi từ hộp thứ hai. Biết rằng hai viên bi được lấy từ hộp thứ hai đều có màu đỏ, xác suất viên bi được lấy ra từ hộp thứ nhất có màu xanh là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A1 là biến cố viên bi được lấy ra từ hộp thứ nhất là bi xanh; A2 là biến cố viên bi được lấy ra từ hộp thứ nhất là bi đỏ. Gọi B là biến cố hai viên bi được lấy ra từ hộp thứ hai đều là màu đỏ.

Ta có \({\rm{P}}\left( {{\rm{A}}1} \right) = \frac{2}{3};{\rm{P}}\left( {{\rm{A}}2} \right) = \frac{1}{3};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{{{\rm{C}}{6^2}}}{{{\rm{C}}{{10}^2}}} = \frac{1}{3};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{{{\rm{C}}{7^2}}}{{{\rm{C}}{{10}^2}}} = \frac{7}{{15}}.\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{7}{{15}} = \frac{{17}}{{45}}\)

Biết rằng hai viên bi lấy từ hộp thứ hai đều có màu đỏ, xác suất viên bi lấy ra từ hộp thứ nhất có màu xanh là \({\rm{P}}\left( {{\rm{A}}1\mid {\rm{B}}} \right) = \frac{{{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right)}}{{{\rm{P}}({\rm{B}})}} = \frac{{\frac{1}{3} \cdot \frac{2}{3}}}{{\frac{{17}}{{45}}}} = \frac{{10}}{{17}}.\)

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A1 là biến cố viên bi lấy ra từ hộp thứ nhất là bi xanh; A2 là biến cố viên bi lấy ra từ hộp thứ nhất là bi đỏ. Gọi B là biến cố hai viên bi được lấy ra từ hộp thứ hai có cùng màu.

Ta có:

\({\rm{P}}\left( {{\rm{A}}1} \right) = \frac{2}{3};{\rm{P}}\left( {{\rm{A}}2} \right) = \frac{1}{3};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{{{\rm{C}}{4^2} + {\rm{C}}{6^2}}}{{{\rm{C}}{{10}^2}}} = \frac{7}{{15}};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{{{\rm{C}}{3^2} + {\rm{C}}{7^2}}}{{{\rm{C}}{{10}^2}}} = \frac{8}{{15}}\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \frac{7}{{15}} \cdot \frac{2}{3} + \frac{8}{{15}} \cdot \frac{1}{3} = \frac{{22}}{{45}}{\rm{.}}\)Chọn D

Lời giải

Gọi A1 là biến cố bạn Sơn chọn hộp thứ nhất; A2 là biến cố bạn Sơn chọn hộp thứ hai. Gọi B là biến cố viên bi được chọn có màu xanh.

Ta có \({\rm{P}}\left( {{\rm{A}}1} \right) = {\rm{P}}\left( {{\rm{A}}2} \right) = 0,5;{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{5}{7};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{4}{{10}}.\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \left( {\frac{5}{7} + \frac{4}{{10}}} \right) \cdot \frac{1}{2} = \frac{{39}}{{70}}{\rm{.}}\)Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay