Câu hỏi:
23/09/2024 693Từ câu 11 đến câu 18: Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Góc giữa hai đường thẳng AD và DB bằng \(\widehat {{\rm{ADB}}} = {45^o }.\) Chọn B.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Vì \({\rm{AB}}//{\rm{CD}}\) nên góc giữa hai đường thẳng AB và CD bằng \({0^o }.\) Chọn A.
Câu 3:
Lời giải của GV VietJack
Góc giữa hai đường thẳng AB và SC bằng \(\widehat {{\rm{SCD}}} = {60^o}.\) Chọn C.
Câu 4:
Lời giải của GV VietJack
Vì \({\rm{BD}} \bot ({\rm{SAC}})\) nên \({\rm{BD}} \bot {\rm{SA}}.\) Góc giữa hai đường thẳng SA và BD bằng \({90^o }.\) Chọn D.
Câu 5:
Lời giải của GV VietJack
Vì \({\rm{SO}} \bot ({\rm{ABCD}})\) nên góc giữa đường thẳng SA và mặt phẳng \(({\rm{ABCD}})\) bằng \(\widehat {{\rm{SAO}}} = {45^o}.\)
Chọn B.
Câu 6:
Lời giải của GV VietJack
Vì \({\rm{AB}}//({\rm{SCD}})\) nên góc giữa đường thẳng AB và mặt phẳng \(({\rm{SCD}})\) bằng \({0^o }.\) Chọn A.
Câu 7:
Lời giải của GV VietJack
Gọi M và N lần lượt là trung điểm của AB và CD. Góc nhị diện \([{\rm{A}},{\rm{d}},{\rm{D}}]\) bằng \(\widehat {{\rm{MSN}}} = 2\widehat {{\rm{MSO}}}.\)
Ta có: \(\tan \widehat {{\rm{MSO}}} = \frac{{{\rm{OM}}}}{{{\rm{SO}}}} = \frac{{\frac{{\rm{a}}}{2}}}{{\frac{{{\rm{a}}\sqrt 2 }}{2}}} = \frac{1}{{\sqrt 2 }}\)
\( \Rightarrow \tan 2\widehat {{\rm{MSO}}} = \frac{{2\tan \widehat {{\rm{MSO}}}}}{{1 - {{\tan }^2}\widehat {{\rm{MSO}}}}} = \frac{{2 \cdot \frac{1}{{\sqrt 2 }}}}{{1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}} = 2\sqrt 2 .\) Chon A.
Câu 8:
Lời giải của GV VietJack
Gọi H là hình chiếu của O lên SA. Ta có góc nhị diện [B, SA, D] có số đo bằng \(\widehat {{\rm{BHD}}} = 2\widehat {{\rm{BHO}}}\),
\({\rm{BO}} = \frac{1}{2}{\rm{BD}} = \frac{{{\rm{a}}\sqrt 2 }}{2},{\rm{OH}} = \frac{{{\rm{OA}} \cdot {\rm{OS}}}}{{{\rm{SA}}}} = \frac{{\frac{{\rm{a}}}{{\sqrt 2 }} \cdot \frac{{\rm{a}}}{{\sqrt 2 }}}}{{\sqrt {{{\left( {\frac{{\rm{a}}}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{\rm{a}}}{{\sqrt 2 }}} \right)}^2}} }} = \frac{{\rm{a}}}{2}\)\(\tan \widehat {{\rm{BHO}}} = \frac{{{\rm{BO}}}}{{{\rm{OH}}}} = \frac{{\frac{{\rm{a}}}{{\sqrt 2 }}}}{{\frac{{\rm{a}}}{2}}} = \sqrt 2 \Rightarrow \tan 2\widehat {{\rm{BHO}}} = \frac{{2\tan \widehat {{\rm{BHO}}}}}{{1 - {{\tan }^2}\widehat {{\rm{BHO}}}}} = \frac{{2 \cdot \sqrt 2 }}{{1 - {{(\sqrt 2 )}^2}}} = - 2\sqrt 2 \)
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 5:
Câu 6:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận