Câu hỏi:

23/09/2024 1,000

Từ câu 11 đến câu 18: Cho hình chóp tứ giác đều  có tất cả các cạnh bằng nhau.

Góc giữa hai đường thẳng AD và DB bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Góc giữa hai đường thẳng AD và DB bằng \(\widehat {{\rm{ADB}}} = {45^o }.\) Chọn B.

Câu hỏi cùng đoạn

Câu 2:

Góc giữa hai đường thẳng AB và CD bằng

Xem lời giải

verified Lời giải của GV VietJack

\({\rm{AB}}//{\rm{CD}}\) nên góc giữa hai đường thẳng AB và CD bằng \({0^o }.\) Chọn A.

Câu 3:

Góc giữa hai đường thẳng AB và SC bằng 

Xem lời giải

verified Lời giải của GV VietJack

Góc giữa hai đường thẳng AB và SC bằng \(\widehat {{\rm{SCD}}} = {60^o}.\) Chọn C.

Câu 4:

Góc giữa hai đường thẳng SA và BD bằng 

Xem lời giải

verified Lời giải của GV VietJack

\({\rm{BD}} \bot ({\rm{SAC}})\) nên \({\rm{BD}} \bot {\rm{SA}}.\) Góc giữa hai đường thẳng SA và BD bằng \({90^o }.\) Chọn D.

Câu 5:

Góc giữa đường thẳng SA và mặt phẳng \(({\rm{ABCD}})\) bằng 

Xem lời giải

verified Lời giải của GV VietJack

\({\rm{SO}} \bot ({\rm{ABCD}})\) nên góc giữa đường thẳng SA và mặt phẳng \(({\rm{ABCD}})\) bằng \(\widehat {{\rm{SAO}}} = {45^o}.\)

Chọn B.

Câu 6:

Góc giữa đường thẳng AB và mặt phẳng \(({\rm{SCD}})\) bằng 

Xem lời giải

verified Lời giải của GV VietJack

Vì \({\rm{AB}}//({\rm{SCD}})\) nên góc giữa đường thẳng AB và mặt phẳng \(({\rm{SCD}})\) bằng \({0^o }.\) Chọn A.

Câu 7:

Gọi d là giao tuyến của hai mặt phẳng \(({\rm{SAB}})\) và \(({\rm{SCD}}).\) Góc nhị diện \([{\rm{A}},{\rm{d}},{\rm{D}}]\) làm tròn đến hàng đơn vị bằng 

Xem lời giải

verified Lời giải của GV VietJack

Gọi M và N lần lượt là trung điểm của AB và CD. Góc nhị diện \([{\rm{A}},{\rm{d}},{\rm{D}}]\) bằng \(\widehat {{\rm{MSN}}} = 2\widehat {{\rm{MSO}}}.\)

Ta có: \(\tan \widehat {{\rm{MSO}}} = \frac{{{\rm{OM}}}}{{{\rm{SO}}}} = \frac{{\frac{{\rm{a}}}{2}}}{{\frac{{{\rm{a}}\sqrt 2 }}{2}}} = \frac{1}{{\sqrt 2 }}\)

\( \Rightarrow \tan 2\widehat {{\rm{MSO}}} = \frac{{2\tan \widehat {{\rm{MSO}}}}}{{1 - {{\tan }^2}\widehat {{\rm{MSO}}}}} = \frac{{2 \cdot \frac{1}{{\sqrt 2 }}}}{{1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}} = 2\sqrt 2 .\) Chon A.

Câu 8:

Góc nhị diện \([{\rm{B}},{\rm{SA}},{\rm{D}}]\) làm tròn đến hàng đơn vị bằng 

Xem lời giải

verified Lời giải của GV VietJack

Gọi H là hình chiếu của O lên SA. Ta có góc nhị diện [B, SA, D] có số đo bằng \(\widehat {{\rm{BHD}}} = 2\widehat {{\rm{BHO}}}\),

\({\rm{BO}} = \frac{1}{2}{\rm{BD}} = \frac{{{\rm{a}}\sqrt 2 }}{2},{\rm{OH}} = \frac{{{\rm{OA}} \cdot {\rm{OS}}}}{{{\rm{SA}}}} = \frac{{\frac{{\rm{a}}}{{\sqrt 2 }} \cdot \frac{{\rm{a}}}{{\sqrt 2 }}}}{{\sqrt {{{\left( {\frac{{\rm{a}}}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{\rm{a}}}{{\sqrt 2 }}} \right)}^2}} }} = \frac{{\rm{a}}}{2}\)\(\tan \widehat {{\rm{BHO}}} = \frac{{{\rm{BO}}}}{{{\rm{OH}}}} = \frac{{\frac{{\rm{a}}}{{\sqrt 2 }}}}{{\frac{{\rm{a}}}{2}}} = \sqrt 2 \Rightarrow \tan 2\widehat {{\rm{BHO}}} = \frac{{2\tan \widehat {{\rm{BHO}}}}}{{1 - {{\tan }^2}\widehat {{\rm{BHO}}}}} = \frac{{2 \cdot \sqrt 2 }}{{1 - {{(\sqrt 2 )}^2}}} = - 2\sqrt 2 \)

Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Góc giữa hai đường thẳng AB và BC bằng 

Xem đáp án » 23/09/2024 1,177

Câu 2:

Góc giữa hai đường thẳng \({\rm{A}}{{\rm{A}}^\prime }\) và CD bằng 

Xem đáp án » 23/09/2024 1,161

Câu 3:

Góc giữa hai đường thẳng \({{\rm{A}}^\prime }{\rm{B}}\) ' và AC bằng 

Xem đáp án » 23/09/2024 0

Câu 4:

Góc giữa hai đường thẳng BD và CB ' bằng

Xem đáp án » 23/09/2024 0

Câu 5:

Góc giữa hai đường thẳng BD và \({{\rm{B}}^\prime }{{\rm{D}}^\prime }\) bằng 

Xem đáp án » 23/09/2024 0

Câu 6:

Góc giữa đường thẳng \({{\rm{B}}^\prime }{\rm{C}}\) và mặt phẳng \(({\rm{ABCD}})\) bằng

Xem đáp án » 23/09/2024 0
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay