Câu hỏi:

01/10/2024 1,130 Lưu

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây.

Cho hàm số y = ax^3 + bx^2 + cx + d (ảnh 1)

Khẳng định nào sau đây là đúng?

A. \(a > 0,\,b > 0,\,c > 0,\,d > 0\).

B. \(a > 0,\,b < 0,\,c > 0,\,d < 0\).                        

C. \(a > 0,\,b > 0,\,c < 0,\,d > 0\).

D. \(a > 0,\,b < 0,\,c < 0,\,d > 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có đồ thị cắt trục tung tại \({y_0} > 0\), suy ra \(d > 0\).

Từ đồ thị, ta thấy \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \), do đó hệ số \(a > 0\).

Ta có \(y' = 3a{x^2} + 2bx + c\).

Đồ thị hàm số có 2 điểm cực trị nên phương trình \(y' = 0\) có hai nghiệm phân biệt \({x_1},\,{x_2}\) (giả sử \({x_1} < {x_2}\)) thỏa mãn:

\({x_1} + {x_2} = \frac{{ - 2b}}{{3a}} > 0 \Rightarrow \frac{b}{a} < 0 \Rightarrow b < 0\);

\({x_1}{x_2} = \frac{c}{{3a}} < 0 \Rightarrow c < 0\).

Vậy \(a > 0,\,b < 0,\,c < 0,\,d > 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {2;\,2} \right)\).    
B. \(\left( { - 2;\, - 2} \right)\).
C. \(\left( { - 2;\,2} \right)\).
D. \(\left( {2;\, - 2} \right)\).

Lời giải

Đáp án đúng là: A

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Dựa vào đồ thị, ta thấy, giao điểm này có tọa độ là \(\left( {2;\,2} \right)\).

Lời giải

a) S,          b) Đ,           c) S,            d) Đ.

Hướng dẫn giải

Quan sát bảng biến thiên, ta thấy:

– Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;0} \right)\)\(\left( {1;\, + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\). Do đó, ý b) đúng.

Ta có \( - 2 < f\left( x \right)\) nhưng không tồn tại giá trị của \(x\) để \(f\left( x \right) = - 2\) nên hàm số đã cho không có giá trị nhỏ nhất, vậy ý c) sai.

– Vì \( - 2 < - \frac{3}{2} < - 1\) nên từ bảng biến thiên, ta thấy đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 1 điểm. Do đó, phương trình \(f\left( x \right) = - \frac{3}{2}\) có duy nhất 1 nghiệm. Vậy ý d) đúng.

Câu 4

A. \(y = \frac{{x + 1}}{{x - 1}}\).
B. \(y = \frac{{x - 2}}{{x - 1}}\).   
C. \(y = \frac{{2x - 1}}{{x - 1}}\).

D. \(y = \frac{{x - 3}}{{x - 2}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hàm số đã cho có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\).     

B. Hàm số đã cho nghịch biến trên \(\mathbb{R}\).                        

C. Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).      

D. Hàm số đã cho đồng biến trên khoảng \(\left( {0;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP