Giải các phương trình và bất phương trình sau:
a) \(\left( {\frac{1}{2}x - 1} \right)\left( {3 + 5x} \right) = 0.\) b) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}.\)
Quảng cáo
Trả lời:
|
a) \(\left( {\frac{1}{2}x - 1} \right)\left( {3 + 5x} \right) = 0\) \(\frac{1}{2}x - 1 = 0\) hoặc \(3 + 5x = 0\) \(\frac{1}{2}x = 1\) hoặc \(5x = - 3\) \(x = 2\) hoặc \(x = - \frac{3}{5}\) Vậy phương trình đã cho có hai nghiệm là \(x = 2;\) \(x = - \frac{3}{5}\). b) Điều kiện xác định: \(x \ne 2,\,\,\,x \ne - 2.\) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\) \(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\) \({\left( {x + 2} \right)^2} - {\left( {x - 2} \right)^2} = {x^2} + 16\) \({x^2} + 4x + 4 - \left( {{x^2} - 4x + 4} \right) = {x^2} + 16\) \({x^2} + 4x + 4 - {x^2} + 4x - 4 = {x^2} + 16\) \({x^2} - 8x + 16 = 0\) \({\left( {x - 4} \right)^2} = 0\) \(x - 4 = 0\) \(x = 4\) (thỏa mãn). Vậy nghiệm của phương trình đã cho là \(x = 4\). |
c) \[ - 4x + 3 \le 3x - 1\] \[ - 4x - 3x \le - 1 - 3\] \[ - 7x \le - 4\] \[x \ge \frac{4}{7}.\] Vậy nghiệm của bất phương trình đã cho là \[x \ge \frac{4}{7}.\] d) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}\] \[\frac{{30\left( {2x + 4} \right)}}{{90}} - \frac{{5\left( {4x - 7} \right)}}{{90}} > \frac{{10\left( {2x - 5} \right)}}{{90}} - \frac{{6\left( {2x - 1} \right)}}{{90}}\] \[30\left( {2x + 4} \right) - 5\left( {4x - 7} \right) > 10\left( {2x - 5} \right) - 6\left( {2x - 1} \right)\] \[60x + 120 - 20x + 35 > 20x - 50 - 12x + 6\] \[60x - 20x - 20x + 12x > - 50 + 6 - 120 - 35\] \[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,32x > - 199\] \[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x > \frac{{ - 199}}{{32}}\] Vậy nghiệm của bất phương trình đã cho là \[x > \frac{{ - 199}}{{32}}.\] |
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
⦁ \(\sin C = \frac{{AB}}{{BC}},\) suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{9}{{\sin 32^\circ }} \approx 16,98.\)
⦁ \(AC = AB \cdot \cot C = 9 \cdot \cot 32^\circ \approx 14,40.\)
Vậy \[AC \approx 14,40\] và \[BC \approx 16,98.\]
b) Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).
Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).
Xét \(\Delta BDE\) vuông tại \(B,\) ta có:
\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)
Lời giải
a) Vì số nguyên tử của \({\rm{K,}}\,\,{\rm{N}}\) và \({\rm{O}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2\\x = 2\\3x = 2 \cdot 2 + 2y\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 2\\3x = 4 + 2y.\end{array} \right.\)
Thay \(x = 2\) vào phương trình \(3x = 4 + 2y,\) ta được:
\(3 \cdot 2 = 4 + 2y,\) suy ra \(2y = 2\) nên \(y = 1.\)
Vậy \(x = 2\) và \(y = 1.\) Khi đó ta có phương trình phản ứng hóa học sau khi được cân bằng như sau:
\(2{\rm{KN}}{{\rm{O}}_3} \to 2{\rm{KN}}{{\rm{O}}_2} + {{\rm{O}}_2}.\)
b) Gọi \(x,\,\,y\) (sản phẩm) lần lượt là số sản phẩm của tổ I và tổ II theo kế hoạch cần sản xuất \(\left( {x > 0,\,\,y > 0} \right)\).
Theo bài, theo kế hoạch hai tổ sản xuất 600 sản phẩm nên ta có phương trình: \(x + y = 600\) (1)
Khi tổ I vượt kế hoạch 18% thì số sản phẩm tổ I sản xuất được là: \(x + 18\% x = 1,18x\) (sản phẩm).
Khi tổ II vượt kế hoạch 21% thì số sản phẩm tổ II sản xuất được là: \(y + 21\% y = 1,21y\) (sản phẩm).
Theo bài, cả hai tổ đã hoàn thành vượt mức 120 sản phẩm nên ta có phương trình:
\(1,18x + 1,21y = 600 + 120\) hay \(118x + 121y = 72\,\,000\) (2)
Từ phương trình (1) và phương trình (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 600\\118x + 121y = 72\,\,000\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất của hệ trên với 118, ta được: \(\left\{ \begin{array}{l}118x + 118y = 70\,\,800\\118x + 121y = 72\,\,000\end{array} \right.\)
Trừ hai vế của phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\( - 3y = - 1\,\,200\), suy ra \(y = 400\) (thỏa mãn).
Thay \(y = 400\) vào phương trình \(x + y = 600\), ta được:
\(x + 400 = 600\), suy ra \(x = 200\) (thỏa mãn).
Vậy theo kế hoạch, tổ I và tổ II cần sản xuất lần lượt là 200 sản phẩm và 400 sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
