Câu hỏi:

19/08/2025 1,486 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số xác định trên và có bảng biến thiên như sau:

a) Hàm số đồng biến trên mỗi khoảng .

b) Số điểm cực trị của hàm số đã cho là .

c) Hàm số có giá trị nhỏ nhất bằng .

d) Đồ thị hàm số không có đường tiệm cận.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S,            b) Đ,            c) Đ,            d) Đ.

Hướng dẫn giải

– Quan sát bảng biến thiên, ta thấy hàm số đã cho đồng biến trên mỗi khoảng \[\left( {0;1} \right)\]\(\left( {3;\, + \infty } \right)\), do đó ý a) sai.

– Ta có \(f'\left( x \right)\) đổi dấu từ “–” sang “+” tại các điểm \(x = 0\), \(x = 3\) và đổi dấu từ “+” sang “–” tại điểm \(x = 1\). Vậy hàm số \(y = f\left( x \right)\) có 3 điểm cực trị nên ý b) đúng.

– Hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng \(0\) tại \(x = 0\)\(x = 3\) nên ý c) đúng.

– Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\)\(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = + \infty \) nên đồ thị hàm số này không có đường tiệm cận. Vậy ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,            b) S,            c) S,             d) Đ.

Hướng dẫn giải

 Cho hình hộp ABCD.A'B'C'D' a) Các vecto bằng với vecto AD (ảnh 1)

– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.

Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.

– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \)\(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).

Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \)\[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.

– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).

Vậy ý c) sai.

– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).

Vậy ý d) đúng.

Lời giải

Theo đề bài, ta có hình vẽ sau:

Có ba lực cùng tác động vào một cái bàn như  (ảnh 1)

Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).

Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).

Áp dụng định lý côsin trong tam giác \(OAD\), ta có:

\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).

 \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(OCE\) vuông tại \(C\) nên

\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).

Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).

Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.

Đáp số: \(11\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP