Câu hỏi:
10/10/2024 1,499Cho hình hộp \(ABCD.A'B'C'D'\).
a) Các vectơ bằng với vectơ \(\overrightarrow {AD} \) là \(\overrightarrow {BC} ,\,\,\overrightarrow {B'C'} ,\,\overrightarrow {A'D'} \).
b) Các vectơ đối của vectơ \(\overrightarrow {DB} \) là \[\overrightarrow {BD} ,\,\,\overrightarrow {D'B'} \].
c) \(\overrightarrow {AB} + \overrightarrow {DC} = - 2\overrightarrow {D'C'} \).
d) \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AC'} \).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) Đ.
Hướng dẫn giải
– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.
Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.
– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \) và \(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).
Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \) là \[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.
– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).
Vậy ý c) sai.
– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).
Vậy ý d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{x + d}}\) có đồ thị như hình vẽ.
Trong các số \(a,b,c,d\) có bao nhiêu số có giá trị dương?
Câu 2:
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) tạo với nhau một góc \(110^\circ \) và có độ lớn lần lượt là 9 N và 4 N, lực \(\overrightarrow {{F_3}} \) vuông góc với mặt phẳng tạo bởi hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
Câu 3:
Cho tứ diện \(ABCD\) có \(AB,\,AC,\,AD\) đôi một vuông góc và \(AB = AC = AD = 1\). Gọi \(M\) là trung điểm của \(BC\).
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \).
b) \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AB} = 1\).
c) \(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}\).
d) \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \).
Câu 4:
Câu 5:
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 5\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(M = 2a - 3b\) bằng bao nhiêu?
Câu 6:
Cho hàm số \(y = {e^x} - x + 3\).
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\).
b) Hàm số đã cho đạt cực đại tại \(x = 0\).
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là \(\left( {0;4} \right)\).
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Đường tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận