Câu hỏi:

10/10/2024 1,154

Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí \(A\). Diện tích nhỏ nhất có thể giăng lưới là bao nhiêu mét vuông, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta mô hình hóa bài toán đã cho như hình trên với \(H,\,K\) lần lượt là hình chiếu của \(A\) lên bờ dọc \(BD\) và bờ ngang \(CD\). Khi đó, theo bài ra có \(AH = 12\,\,{\rm{m}},\,\,AK = 5\,\,{\rm{m}}\).

Suy ra \(DK = AH = 12\,\,{\rm{m}},\,\,DH = AK = 5\,\,{\rm{m}}\).

Đặt \(BH = x\,\,\,\left( {{\rm{m}},\,x > 0} \right)\).

Ta có \(AH\,{\rm{//}}\,BC,\,\,AK\,{\rm{//}}\,DH\) nên \(\frac{{BH}}{{HD}} = \frac{{BA}}{{AC}} = \frac{{DK}}{{KC}}\).

Suy ra \(KC = \frac{{HD \cdot DK}}{{BH}} = \frac{{5 \cdot 12}}{x} = \frac{{60}}{x}\) (m).

Diện tích khu nuôi cá riêng là:

\(S = \frac{1}{2}BD \cdot DC = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = 6x + \frac{{150}}{x} + 60\) (m2).

Xét hàm số \(S\left( x \right) = 6x + \frac{{150}}{x} + 60\) với \(x \in \left( {0; + \infty } \right)\).

Ta có \(S'\left( x \right) = 6 - \frac{{150}}{{{x^2}}} = \frac{{6{x^2} - 150}}{{{x^2}}}\). Trên khoảng \(\left( {0; + \infty } \right)\), \(S'\left( x \right) = 0 \Leftrightarrow x = 5\).

Bảng biến thiên của hàm số \(S\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Người ta giăng lưới để nuôi riêng một loại  (ảnh 1)

Từ bảng biến thiên, ta có \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} S\left( x \right) = 120\) tại \(x = 5\).

Vậy diện tích nhỏ nhất có thể giăng dưới là \(120\) m2.

Ngoài ra, ta có thể dùng bất đẳng thức:

\[S = 6x + \frac{{150}}{x} + 60 \ge 2\sqrt {6x \cdot \frac{{150}}{x}}  + 60 = 120\].

Dấu “=” xảy ra khi và chỉ khi \(6x = \frac{{150}}{x} \Leftrightarrow x = 5 \in \left( {0;\, + \infty } \right)\).

Đáp số: \(120\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{x + d}}\) có đồ thị như hình vẽ.

Trong các số \(a,b,c,d\) có bao nhiêu số có giá trị dương?

Xem đáp án » 10/10/2024 26,302

Câu 2:

Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) tạo với nhau một góc \(110^\circ \) và có độ lớn lần lượt là 9 N và 4 N, lực \(\overrightarrow {{F_3}} \) vuông góc với mặt phẳng tạo bởi hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?

Xem đáp án » 10/10/2024 22,183

Câu 3:

Cho tứ diện \(ABCD\)\(AB,\,AC,\,AD\) đôi một vuông góc và \(AB = AC = AD = 1\). Gọi \(M\) là trung điểm của \(BC\).

a) \(\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \).

b) \(\overrightarrow {AB}  \cdot \overrightarrow {AD}  = \overrightarrow {AC}  \cdot \overrightarrow {AD}  = \overrightarrow {AC}  \cdot \overrightarrow {AB}  = 1\).

c) \(\overrightarrow {AM}  \cdot \overrightarrow {BD}  = \frac{1}{2}\).

d) \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \).

Xem đáp án » 10/10/2024 11,448

Câu 4:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 5\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(M = 2a - 3b\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 8,709

Câu 5:

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(M,N\) lần lượt là trung điểm của \(A'D'\)\(C'D'\). Gọi \(\varphi \) là góc giữa hai vectơ \(\overrightarrow {MN} \)\(\overrightarrow {A'B} \). Số đo của góc \(\varphi \) bằng bao nhiêu độ?

Xem đáp án » 10/10/2024 7,489

Câu 6:

Cho hàm số \(y = {e^x} - x + 3\).

a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\).

b) Hàm số đã cho đạt cực đại tại \(x = 0\).

c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là \(\left( {0;4} \right)\).

d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.

Xem đáp án » 10/10/2024 6,201

Câu 7:

Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). Tích vô hướng \(\overrightarrow {AB}  \cdot \overrightarrow {AC} \) bằng 

Xem đáp án » 10/10/2024 3,964

Bình luận


Bình luận