Câu hỏi:

10/10/2024 567

Cho hàm số \(y = \frac{{2x - 1}}{{x - 1}}\) có đồ thị là \(\left( C \right)\). Gọi \(I\) là giao điểm của hai đường tiệm cận của \(\left( C \right)\), \(M\) là một điểm bất kì trên \(\left( C \right)\) và tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt hai tiệm cận tại \(A,\,B\). Biết chu vi tam giác \(IAB\) có giá trị nhỏ nhất bằng \(a + \sqrt b \) với \(a,\,b \in \mathbb{N}\). Giá trị của biểu thức \(a - b + 4\) bằng bao nhiêu?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\). Giả sử \(M\left( {{x_0};\,{y_0}} \right) \in \left( C \right)\), \(\left( {{x_0} \ne 1} \right)\) suy ra tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là \(y = \frac{{ - 1}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{2{x_0} - 1}}{{{x_0} - 1}}\).

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 1}}{{x - 1}} =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 1}}{{x - 1}} =  - \infty \) nên đường thẳng \(x = 1\) là tiệm cận đứng của \(\left( C \right)\).

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x - 1}}{{x - 1}} = 2;\,\,\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{x - 1}} = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

Suy ra \(I\left( {1;\,\,2} \right)\).

Điểm \(A\left( {1;\,\frac{{2{x_0}}}{{{x_0} - 1}}} \right)\) là giao điểm của tiệm cận đứng và tiếp tuyến, điểm \(B\left( {2{x_0} - 1;\,2} \right)\) là giao điểm của tiệm cận ngang và tiếp tuyến.

Ta có chu vi của tam giác \(IAB\) bằng:

\(IA + IB + AB = \frac{2}{{\left| {{x_0} - 1} \right|}} + 2\left| {{x_0} - 1} \right| + \sqrt {4{{\left( {{x_0} - 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} - 1} \right)}^2}}}} \).

Áp dụng bất đẳng thức AM-GM, ta có \(IA + IB + AB \ge 2\sqrt 4  + \sqrt {4 \cdot 2}  = 4 + \sqrt 8 \).

Đẳng thức xảy ra khi \(\left| {{x_0} - 1} \right| = 1 \Leftrightarrow {x_0} = 0\) hoặc \({x_0} = 2\).

Vậy chu vi tam giác \(IAB\) đạt giá trị nhỏ nhất bằng \(4 + \sqrt 8 \) khi \(M\left( {0;1} \right)\) hoặc \(M\left( {2;3} \right)\).

Suy ra \(a = 4,b = 8\) nên \(a - b + 4 = 0\).

Đáp số: \(0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{x + d}}\) có đồ thị như hình vẽ.

Trong các số \(a,b,c,d\) có bao nhiêu số có giá trị dương?

Xem đáp án » 10/10/2024 26,302

Câu 2:

Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) tạo với nhau một góc \(110^\circ \) và có độ lớn lần lượt là 9 N và 4 N, lực \(\overrightarrow {{F_3}} \) vuông góc với mặt phẳng tạo bởi hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?

Xem đáp án » 10/10/2024 22,184

Câu 3:

Cho tứ diện \(ABCD\)\(AB,\,AC,\,AD\) đôi một vuông góc và \(AB = AC = AD = 1\). Gọi \(M\) là trung điểm của \(BC\).

a) \(\overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow {AD}  + \overrightarrow {CB} \).

b) \(\overrightarrow {AB}  \cdot \overrightarrow {AD}  = \overrightarrow {AC}  \cdot \overrightarrow {AD}  = \overrightarrow {AC}  \cdot \overrightarrow {AB}  = 1\).

c) \(\overrightarrow {AM}  \cdot \overrightarrow {BD}  = \frac{1}{2}\).

d) \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \).

Xem đáp án » 10/10/2024 11,449

Câu 4:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 5\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(M = 2a - 3b\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 8,709

Câu 5:

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(M,N\) lần lượt là trung điểm của \(A'D'\)\(C'D'\). Gọi \(\varphi \) là góc giữa hai vectơ \(\overrightarrow {MN} \)\(\overrightarrow {A'B} \). Số đo của góc \(\varphi \) bằng bao nhiêu độ?

Xem đáp án » 10/10/2024 7,489

Câu 6:

Cho hàm số \(y = {e^x} - x + 3\).

a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\).

b) Hàm số đã cho đạt cực đại tại \(x = 0\).

c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là \(\left( {0;4} \right)\).

d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.

Xem đáp án » 10/10/2024 6,202

Câu 7:

Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). Tích vô hướng \(\overrightarrow {AB}  \cdot \overrightarrow {AC} \) bằng 

Xem đáp án » 10/10/2024 3,965

Bình luận


Bình luận