Câu hỏi:

10/10/2024 150 Lưu

Cho hàm số \[y = f\left( x \right)\]\(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\)\(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - 2\). Phát biểu nào dưới đây là đúng?

A. Đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng \(x = 2\)\(x =  - 2\).

B. Đồ thị hàm số đã cho không có tiệm cận ngang.

C. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.

D. Đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng \(y = 2\)\(y =  - 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Dựa vào định nghĩa đường tiệm cận ngang của đồ thị hàm số, ta có:

\(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\)\(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - 2\) thì đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng \(y = 2\)\(y =  - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vẽ \(\overrightarrow {OA}  = \overrightarrow {{F_1}} ,\,\,\overrightarrow {OB}  = \overrightarrow {{F_2}} ,\,\,\overrightarrow {OC}  = \overrightarrow {{F_3}} \).

Dựng hình bình hành \(OADB\) và hình bình hành \(ODEC\).

Hợp lực tác động vào vật là \(\overrightarrow F  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OD}  + \overrightarrow {OC}  = \overrightarrow {OE} \).

Áp dụng định lí côsin trong tam giác \(OBD\), ta có:

\(O{D^2} = B{D^2} + O{B^2} - 2BD \cdot OB \cdot \cos \widehat {OBD} = O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ \)

\(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(ODE\) vuông tại \(D\).

Ta có \(O{E^2} = O{C^2} + O{D^2} = O{C^2} + O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ \).

Suy ra \(O{E^2} = \sqrt {O{C^2} + O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ } \)

\( = \sqrt {{{10}^2} + {{20}^2} + {{15}^2} + 2 \cdot 20 \cdot 15 \cdot \cos 135^\circ }  \approx 17,3\).

Vậy độ lớn của hợp lực là \(F = OE \approx 17,3\) N.

Đáp số: \(17,3\).

Lời giải

a) S, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}} = x + 1 + \frac{1}{{x + 2}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 3\) hoặc \(x =  - 1\).

Bảng biến thiên của hàm số như sau:

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực đại tại \(x =  - 3\), ; đạt cực tiểu tại \(x =  - 1\), \({y_{CT}} = 1\).

Suy ra . Do đó, ý b) sai.

– Tiệm cận:

+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 2\).

+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = x + 1\).

Với \(x = 0\) thì \(y = 0 + 1 = 1\), do đó đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\). Vậy ý c) đúng.

– Đường thẳng \(x - 3y - 6 = 0\)\( \Leftrightarrow y = \frac{1}{3}x - 2\) có hệ số góc \({k_1} = \frac{1}{3}\). Đường thẳng này vuông góc với tiếp tuyến của đồ thị hàm số đã cho nên tiếp tuyến này có hệ số góc \({k_2} = \frac{{ - 1}}{{{k_1}}} =  - 3\).

Khi đó, với \({x_0}\) là hoành độ của tiếp điểm thì \(y'\left( {{x_0}} \right) = \frac{{x_0^2 + 4{x_0} + 2}}{{{{\left( {{x_0} + 2} \right)}^2}}} =  - 3\).

Ta tìm được \({x_0} =  - \frac{5}{2}\) hoặc \({x_0} =  - \frac{3}{2}\).

+) Với \({x_0} =  - \frac{5}{2}\), ta có tiếp tuyến: \(y =  - 3x - 11\).

+) Với \({x_0} =  - \frac{3}{2}\), ta có tiếp tuyến: \(y =  - 3x - 3\), tiếp tuyến này đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Do đó, ý d) đúng.

Câu 3

A. \(\frac{2}{3}\).
B. \(\frac{{10}}{3}\).
C. \(\frac{{2\sqrt 2 }}{3}\).
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = x - 5\).
B. \(y = x + 5\).
C. \(y = x + 2\).
D. \(y = x - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 2; - 5;7} \right)\).
B. \(\left( { - 2;5;7} \right)\).
C. \(\left( {2;5;7} \right)\).
D. \(\left( {2;5; - 7} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP