Câu hỏi:

11/10/2024 142

Cho hệ phương trình \[\left\{ \begin{array}{l}5x + y = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 9x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Từ hệ phương trình đã cho, cách đơn giản nhất để thu được phương trình bậc nhất một ẩn bằng phương pháp cộng đại số là trừ từng vế của phương trình (1) cho phương trình (2).

Khi đó ta thu được \[5x - \left( { - 9x} \right) + y - y = 7 - \left( { - 3} \right)\]

Tức là \[14x = 10.\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Thay \[x = y\] vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}3y + y = 4\\\left( {2m + 1} \right)y + 7y = 8\end{array} \right.\] hay \[\left\{ \begin{array}{l}4y = 4\\\left( {2m + 8} \right)y = 8\,\,\,\,\,\,\,\,\left( 1 \right)\end{array} \right.\]

Với \[4y = 4,\] ta có: \[y = 1.\]

Thay \[y = 1\] vào phương trình (1), ta được:

\[\left( {2m + 8} \right) \cdot 1 = 8\]

\[2m + 8 = 8\]

\[2m = 0\]

\[m = 0.\]

Vậy \[m = 0\] thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án B.

Lời giải

Đáp án đúng là: C

Thay \[x = - 1,y = 2\] vào hệ phương trình đã cho, ta được:

\[\left\{ \begin{array}{l} - 1 + a \cdot 2 = 3\\a \cdot \left( { - 1} \right) - 3b \cdot 2 = 4\end{array} \right.\] hay \[\left\{ \begin{array}{l} - 1 + 2a = 3\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - a - 6b = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Giải phương trình (1), ta có: \[2a = 4\] hay \[a = 2.\]

Thay \[a = 2\] vào phương trình (2), ta được:

\[ - 2 - 6b = 4\] hay \[6b = - 6,\] tức là \[b = - 1.\]

Vậy \[a = 2,b = - 1.\]

Do đó ta chọn phương án C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP