Để giải hệ phương trình \[\left\{ \begin{array}{l} - 2x + 5y = 3\\9x + 8y = 7\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta ấn liên tiếp các phím:
Ta thấy màn hình hiện ra kết quả \[x = \frac{{11}}{{61}}.\]
Ấn tiếp phím = ta thấy trên màn hình hiện ra kết quả \[y = \frac{{41}}{{61}}.\]
Vậy để giải hệ phương trình đã cho bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Do đó ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Thay \[x = y\] vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}3y + y = 4\\\left( {2m + 1} \right)y + 7y = 8\end{array} \right.\] hay \[\left\{ \begin{array}{l}4y = 4\\\left( {2m + 8} \right)y = 8\,\,\,\,\,\,\,\,\left( 1 \right)\end{array} \right.\]
Với \[4y = 4,\] ta có: \[y = 1.\]
Thay \[y = 1\] vào phương trình (1), ta được:
\[\left( {2m + 8} \right) \cdot 1 = 8\]
\[2m + 8 = 8\]
\[2m = 0\]
\[m = 0.\]
Vậy \[m = 0\] thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Lời giải
Đáp án đúng là: A
Cách 1. ⦁ Thay \(x = 3\) và \(y = 2\) vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}3 + 2 = 5\\3 - 2 = 1\end{array} \right.\].
Do đó cặp số \[\left( {3;2} \right)\] là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\].
⦁ Tương tự, ta thay lần lượt các cặp số ở phương án B, C, D vào hệ phương trình đã cho thì thấy rằng các cặp số này không phải nghiệm của hệ phương trình đó.
Vậy ta chọn phương án A.
Cách 2. Sử dụng máy tính cầm tay, lần lượt bấm các phím
Trên màn hình hiện lên kết quả \(x = 3\), ta ấn tiếp phím = thì màn hình hiện lên kết quả \(y = 2\).
Như vậy cặp số \[\left( {3;2} \right)\] là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\].
Vậy ta chọn phương án A.
Cách 3. Giải hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\].
Cộng từng vế phương trình thứ nhất với phương trình thứ hai của hệ đã cho, ta được:
\[2x = 6,\] tức là \[x = 3.\]
Thay \[x = 3\] vào phương trình \(x + y = 5\), ta được: \[3 + y = 5,\] tức là \[y = 2.\]
Vậy hệ phương trình đã cho có nghiệm duy nhất là \[\left( {3;2} \right).\]
Do đó ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.