Câu hỏi:

12/10/2024 331

III. Vận dụng

Cho \[a,b\] là các số thực dương. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Xét \[\frac{{{{\left( {a + b} \right)}^2}}}{{ab}} - 4 = \frac{{{{\left( {a + b} \right)}^2} - 4ab}}{{ab}}\]

\[ = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{{ab}} = \frac{{{a^2} - 2ab + {b^2}}}{{ab}} = \frac{{{{\left( {a - b} \right)}^2}}}{{ab}}.\]

Với mọi số thực dương \[a,b\] ta có \[{\left( {a - b} \right)^2} \ge 0\] và \[ab > 0,\] nên \[\frac{{{{\left( {a - b} \right)}^2}}}{{ab}} \ge 0.\]

Do đó \[\frac{{{{\left( {a + b} \right)}^2}}}{{ab}} - 4 \ge 0.\]

Suy ra \[\frac{{{{\left( {a + b} \right)}^2}}}{{ab}} \ge 4.\]

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có:

\[ - 3x + 7 > 0\]

\[ - 3x > - 7\]

\[x < \frac{7}{3}.\]

Vậy nghiệm của phương trình đã cho là \[x < \frac{7}{3}.\]

Do đó ta chọn phương án A.

</></>

Câu 2

Lời giải

Đáp án đúng là: A

Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu (\[a\] âm và \[b\] dương; \[a\] dương và \[b\] âm) và ngược lại.

Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.

Vậy ta chọn phương án A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP