Câu hỏi:

13/10/2024 488

II. Thông hiểu

Cho tam giác \[ABC\] vuông tại \[A.\] Trong các khẳng định sau, khẳng định nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho tam giác  A B C  vuông tại  A .  Trong các khẳng định sau, khẳng định nào đúng? (ảnh 1)

Cách 1. Do tam giác \[ABC\] vuông tại \[A\] nên

⦁ \[\sin B = \frac{{AC}}{{BC}}\] và \[\tan C = \frac{{AB}}{{AC}}.\] Suy ra \[\sin B \ne \tan C.\] Do đó phương án A sai.

⦁ \[\tan B = \frac{{AC}}{{AB}}\] và \[\cos C = \frac{{AC}}{{BC}}.\] Suy ra \[\tan B \ne \cos C.\] Do đó phương án B sai.

⦁ \[\sin C = \frac{{AB}}{{BC}}\] và \[\cos B = \frac{{AB}}{{BC}}.\] Suy ra \[\sin C = \cos B.\] Do đó phương án C đúng.

⦁ \[\cos B = \frac{{AB}}{{BC}}\] và \[\cos C = \frac{{AC}}{{BC}}.\]

Suy ra \[\frac{{\cos C}}{{\cos B}} = \frac{{AC}}{{BC}}:\frac{{AB}}{{BC}} = \frac{{AC}}{{BC}} \cdot \frac{{BC}}{{AB}} = \frac{{AC}}{{AB}} \ne \frac{{AB}}{{AC}}.\] Do đó phương án D sai.

Vậy ta chọn phương án C.

Cách 2. Vì tam giác \[ABC\] vuông tại \[A\] nên \(\widehat {B\,} + \widehat {C\,} = 90^\circ ,\) do đó hai góc \(B\) và \(C\) là hai góc phụ nhau.

Do đó \[\sin B = \cos C;\,\,\cos B = \sin C;\,\,\tan B = \cot C;\,\,\cot B = \tan C.\]

Vậy ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Một cột đèn cao  7  m có bóng trên mặt đất dài  4  m, gần đó có một tòa nhà cao tầng có bóng trên mặt đất dài  80  m (hình vẽ).  Em hãy cho biết tòa nhà đó cao bao nhiêu tầng, biết rằng mỗi tầng cao  2  m? (ảnh 2)

Giả sử bóng trên mặt đất của cột đèn và tia nắng mặt trời tạo nên một góc nghiêng \[\alpha .\]

Suy ra cùng lúc đó, bóng trên mặt đất của tòa nhà và tia nắng mặt trời cũng tạo nên một góc nghiêng \[\alpha .\]

Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \frac{{AB}}{{BC}} = \frac{7}{4}\] (1)

Vì tam giác \[DEF\] vuông tại \[E\] nên \[\tan \alpha = \frac{{DE}}{{EF}} = \frac{{DE}}{{80}}\] (2)

Từ (1), (2), ta thu được \[\frac{{DE}}{{80}} = \frac{7}{4}.\]

Do đó \[DE = \frac{7}{4} \cdot 80 = 140\] (m).

Như vậy, chiều cao của tòa nhà là \[140\] m.

Vậy tòa nhà đó cao \[140:2 = 70\] (tầng).

Do đó ta chọn phương án C.

Câu 2

Cho \[\alpha ,\beta \] là hai góc phụ nhau. Kết luận nào sau đây đúng?

Lời giải

Đáp án đúng là: C

Vì \[\alpha ,\beta \] là hai góc phụ nhau nên \[\beta = 90^\circ - \alpha .\]

Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

\[\sin \alpha = \cos \left( {90^\circ - \alpha } \right) = \cos \beta ;\]

\[\tan \alpha = \cot \left( {90^\circ - \alpha } \right) = \cot \beta .\]

Vậy ta chọn phương án C.

Câu 3

Cho góc nhọn \[\alpha .\] Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác vuông có góc nhọn \[\alpha .\] Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Giá trị của biểu thức \[J = \tan 76^\circ - \cot 14^\circ \] bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \[\beta \] là góc nhọn bất kì. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay