Câu hỏi:

13/10/2024 250

Một máy bay đang bay ở độ cao \[12\] km, khi hạ cánh xuống mặt đất, đường đi của máy bay tạo với mặt đất một góc nghiêng \[\alpha .\] Nếu đường bay của máy bay dài \[320\] km thì góc nghiêng \[\alpha \] gần nhất với

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Một máy bay đang bay ở độ cao  12  km, khi hạ cánh xuống mặt đất, đường đi của máy bay tạo với mặt đất một góc nghiêng  α .  Nếu đường bay của máy bay dài  320  km thì góc nghiêng  α  gần nhất với (ảnh 1)

Ta mô hình hóa bài toán như hình vẽ trên.

Theo bài, máy bay đang ở độ cao \[12\] km nên \[AH = 12\] (km); đường bay từ \[A\] đến \[B\] của máy bay dài \[320\] km nên \[AB = 320\] (km).

Vì tam giác \[AHB\] vuông tại \[H\] nên \[\sin \alpha = \sin \widehat {ABH} = \frac{{AH}}{{AB}} = \frac{{12}}{{320}} = \frac{3}{{80}}.\]

Sử dụng máy tính cầm tay, chuyển máy tính về chế độ “độ”, sau đó ấn liên tiếp các phím

 SHIFT   sin  3  ÷  8  0  =

Ấn tiếp phím °'", ta thấy màn hình hiện lên kết quả: \[2^\circ 8'56.74''.\]

Khi làm tròn đến phút, ta được kết quả \[\alpha = 2^\circ 9'.\]

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Một cột đèn cao  7  m có bóng trên mặt đất dài  4  m, gần đó có một tòa nhà cao tầng có bóng trên mặt đất dài  80  m (hình vẽ).  Em hãy cho biết tòa nhà đó cao bao nhiêu tầng, biết rằng mỗi tầng cao  2  m? (ảnh 2)

Giả sử bóng trên mặt đất của cột đèn và tia nắng mặt trời tạo nên một góc nghiêng \[\alpha .\]

Suy ra cùng lúc đó, bóng trên mặt đất của tòa nhà và tia nắng mặt trời cũng tạo nên một góc nghiêng \[\alpha .\]

Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \frac{{AB}}{{BC}} = \frac{7}{4}\] (1)

Vì tam giác \[DEF\] vuông tại \[E\] nên \[\tan \alpha = \frac{{DE}}{{EF}} = \frac{{DE}}{{80}}\] (2)

Từ (1), (2), ta thu được \[\frac{{DE}}{{80}} = \frac{7}{4}.\]

Do đó \[DE = \frac{7}{4} \cdot 80 = 140\] (m).

Như vậy, chiều cao của tòa nhà là \[140\] m.

Vậy tòa nhà đó cao \[140:2 = 70\] (tầng).

Do đó ta chọn phương án C.

Câu 2

Cho \[\alpha ,\beta \] là hai góc phụ nhau. Kết luận nào sau đây đúng?

Lời giải

Đáp án đúng là: C

Vì \[\alpha ,\beta \] là hai góc phụ nhau nên \[\beta = 90^\circ - \alpha .\]

Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

\[\sin \alpha = \cos \left( {90^\circ - \alpha } \right) = \cos \beta ;\]

\[\tan \alpha = \cot \left( {90^\circ - \alpha } \right) = \cot \beta .\]

Vậy ta chọn phương án C.

Câu 3

II. Thông hiểu

Cho tam giác \[ABC\] vuông tại \[A.\] Trong các khẳng định sau, khẳng định nào đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho góc nhọn \[\alpha .\] Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tam giác vuông có góc nhọn \[\alpha .\] Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Giá trị của biểu thức \[J = \tan 76^\circ - \cot 14^\circ \] bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho \[\beta \] là góc nhọn bất kì. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay