Câu hỏi:

13/10/2024 216 Lưu

Bài toán “giải tam giác vuông” là

A. Bài toán tìm tất cả độ dài các cạnh và số đo các góc còn lại của tam giác đó.

B. Bài toán tìm ít nhất độ dài một cạnh và tất cả số đo các góc còn lại của tam giác đó.

C. Bài toán tìm tất cả độ dài các cạnh và số đo của một góc bất kì của tam giác đó.

D. Bài toán tìm độ dài một cạnh và số đo của một góc của tam giác đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Trong một tam giác vuông, nếu cho biết độ dài hai cạnh hoặc độ dài một cạnh và số đo một góc nhọn thì ta sẽ tìm được tất cả độ dài các cạnh và số đo các góc còn lại của tam giác đó. Bài toán đặt ra như thế gọi là bài toán “giải tam giác vuông”.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho tam giác  A B C  có  B C = 9 c m , ˆ A B C = 50 ∘  và  ˆ A C B = 35 ∘ .  Gọi  N  là chân đường vuông góc hạ từ  A  xuống cạnh  B C .  Độ dài  A N  gần nhất với giá trị nào dưới đây? (ảnh 1)

Tam giác \[ABC\] có \[AN\] là đường cao. Suy ra \[AN \bot BC\] tại \[N.\]

Vì tam giác \[ABN\] vuông tại \[N\] nên \[\tan B = \frac{{AN}}{{BN}}.\] Suy ra \[BN = \frac{{AN}}{{\tan B}}.\]

Tương tự, vì tam giác \[ACN\] vuông tại \[N\] nên \[\tan C = \frac{{AN}}{{CN}}.\] Suy ra \[CN = \frac{{AN}}{{\tan C}}.\]

Ta có \[BN + CN = BC = 9\] hay \[\frac{{AN}}{{\tan B}} + \frac{{AN}}{{\tan C}} = 9\]

Tức là, \[AN\left( {\frac{1}{{\tan 50^\circ }} + \frac{1}{{\tan 35^\circ }}} \right) = 9\]

Khi đó \[AN = 9:\left( {\frac{1}{{\tan 50^\circ }} + \frac{1}{{\tan 35^\circ }}} \right) \approx 3,97 \approx 4\] (cm).

Vậy độ dài \[AN\] gần nhất với giá trị là \[4\] cm.

Do đó ta chọn phương án C.

Lời giải

Đáp án đúng là: B

Cho tam giác  A B C  nhọn có  A B = 3 , 5 ; A C = 4 ; ˆ A = 40 ∘  và  B H  là đường cao. Diện tích tam giác  A B C  gần nhất với (ảnh 1)

Vì tam giác \[ABC\] nhọn có \[BH\] là đường cao nên \[BH \bot AC.\]

Vì tam giác \[ABH\] vuông tại \[H\] nên \[BH = AB.\sin A = 3,5.\sin 40^\circ .\]

Diện tích tam giác \[ABC\] là: \[S = \frac{1}{2}.BH.AC = \frac{1}{2}.3,5.\sin 40^\circ .4 \approx 4,5\] (đvdt).

Vậy diện tích tam giác \[ABC\] khoảng \[4,5\] (đvdt).

Do đó ta chọn phương án B.

Câu 3

A. \[\frac{{5\sqrt 3 }}{3}\] (cm).

B. \[\frac{{10\sqrt 3 }}{3}\] (cm).

C. \[5\sqrt 3 \] (cm).

D. \[10\sqrt 3 \] (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[AC \approx 9,19\,\,{\rm{cm}};\,\,\widehat {C\,} = 50^\circ.\]

B. \[AC \approx 7,71{\rm{\;cm}};\,\,\widehat {C\,} = 50^\circ.\]

C. \[AC \approx 9,1\,\,{\rm{cm}};\,\,\widehat {C\,} = 50^\circ.\]

D. \[AC \approx 7,8{\rm{\;cm}};\,\,\widehat {C\,} = 50^\circ.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\cos C = \frac{3}{5}.\)

B. \(\cos B = \frac{4}{5}.\)

C. \[BC = 26,6\] cm.

D. \[AB = 21,3\] cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[c = b\cot B.\]
B. \[b = a\tan C.\]
C. \[b = c\tan C.\]

D. \[c = a\tan B.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP