Câu hỏi:
13/10/2024 2,000Tại một thời điểm trong ngày, các tia nắng mặt trời tạo với mặt đất một góc bằng \[55^\circ ,\] bóng của một cây xanh trên mặt đất dài \[14,25\] m (như hình vẽ).

Chiều cao \[AH\] của cây xanh (làm tròn đến hàng phần trăm) là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Theo đề, ta có \[BH = 14,25\] m và \[\widehat {ABH} = 55^\circ .\]
Vì tam giác \[ABH\] vuông tại H nên \[AH = BH.\tan \widehat {ABH} = 14,25.\tan 55^\circ \approx 20,35\] (m).
Do đó chiều cao của cây xanh là \[AH \approx 20,35\] m.
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Theo đề, ta có: \[\widehat {ABH} = 35^\circ \] và \[AH = 4,2\] (m).
Vì tam giác \[ABH\] vuông tại \[H\] nên ta có \(AH = AB \cdot \sin \widehat {ABH}\).
Suy ra \[AB = \frac{{AH}}{{\sin \widehat {ABH}}} = \frac{{4,2}}{{\sin 35^\circ }}\] (m).
Thời gian để một người di chuyển từ tầng 1 lên tầng 2 là:
\[\frac{{4,2}}{{\sin 35^\circ }}:0,65 \approx 11,3\] (giây).
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: C

Vì cầu môn cao \[2,4\] m nên \[BC = 2,4\] m.
Vì khoảng cách từ vị trí sút bóng đến chân cầu môn là \[25\] m nên \[AB = 25\] m.
Do góc \[\alpha \] tạo bởi đường đi của quả bóng và mặt đất nên ta có \[\alpha = \widehat {BAC}.\]
Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{{2,4}}{{25}} = 0,096.\]
Suy ra \[\alpha \approx 5^\circ 29'.\]
Do đó góc tạo bởi đường đi của quả bóng và mặt đất là \[\alpha \approx 5^\circ 29'.\]
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.