Câu hỏi:

13/10/2024 360 Lưu

III. Vận dụng

Cho tam giác \[ABC\] vuông tại \[A\] có \[AH\] là đường cao. Biết \[AB = 10\] cm, \[BH = 5\] cm. Tỉ số lượng giác \[\cos C\] bằng

A. \[\frac{{\sqrt 2 }}{2}.\]

B. \[\frac{1}{2}.\]

C. \[\frac{{\sqrt 3 }}{2}.\]

D. \[\sqrt 3 .\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho tam giác  A B C  vuông tại  A  có  A H  là đường cao. Biết  A B = 10  cm,  B H = 5  cm. Tỉ số lượng giác  cos C  bằng (ảnh 1)

Tam giác \[ABC\] vuông tại \[A\] có: \[\widehat {B\,} + \widehat {C\,} = 90^\circ .\]

Do đó hai góc \(B\) và \(C\) phụ nhau nên \(\cos C = \sin B.\)

Tam giác \[ABC\] vuông tại \[A\] có \[AH\] là đường cao nên \[AH \bot BC\] tại \[H.\]

Xét tam giác \[ABH\] vuông tại\(H,\) theo định lí Pythagore, ta có: \(A{B^2} = A{H^2} + B{H^2}\)

Suy ra \(A{H^2} = A{B^2} - B{H^2} = {10^2} - {5^2} = 75.\) Do đó \(AH = \sqrt {75} = 5\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)

Ta có \[\cos C = \sin B = \frac{{AH}}{{AB}} = \frac{{5\sqrt 3 }}{{10}} = \frac{{\sqrt 3 }}{2}.\]

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Vì tam giác \[ABC\] vuông tại \[A\] nên \[AB = AC.\tan C = 12.\tan 40^\circ \approx 10,07\] (m).

Do đó chiều cao \[AB\] của cột cờ khoảng \[10,07\] m.

Vậy ta chọn phương án B.

Câu 2

A. \[c = a\sin B.\]
B. \[b = a\tan C.\]
C. \[b = c\tan B.\]

D. \[c = a\tan B.\]

Lời giải

Đáp án đúng là: C

Vì tam giác \[ABC\] vuông tại \[A\] nên:

⦁ \[b = a\sin B = a\cos C = c\tan B = c\cot C\,;\]

⦁ \[c = a\sin C = a\cos B = c\tan B = c\cot C.\]

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[BC = \sqrt {39} \] cm; \[AC = 8\] cm.

B. \[BC = 8\] cm; \[AC = \sqrt {39} \] cm.

C. \[BC = 16\] cm; \[AC = \sqrt {39} \] cm.

D. \[BC = 4\] cm; \[AC = \frac{{\sqrt {39} }}{2}\] cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[HC = BC.\sin B.\]     

B. \[HC = BC.\cos B.\]                            

C. \[HC = BC.\tan B.\]

D. \[HC = BC.\cot B.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\sin C = \frac{{AB}}{{BC}} = \frac{3}{5}.\]

B. \[\cos C = \frac{{AC}}{{BC}} = \frac{4}{5}.\]

C. \[\tan B = \frac{{AC}}{{AB}} = \frac{4}{3}.\]

D. \[\cot B = \frac{{AB}}{{BC}} = \frac{3}{5}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\sin \alpha = \frac{{EF}}{{DF}}.\]

B. \[\sin \alpha = \frac{{DE}}{{DF}}.\]

C. \[\sin \alpha = \frac{{DE}}{{EF}}.\]

D. \[\sin \alpha = \frac{{EF}}{{DE}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP