Câu hỏi:

13/10/2024 139

Trong không gian \[Oxyz\], cho điểm \[A\left( {3; - 2; - 2} \right)\], \[B\left( {3;2;0} \right)\], \[C\left( {0;2;1} \right)\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \[\overrightarrow {AB} = \left( {0;4;2} \right)\], \[\overrightarrow {AC} = \left( { - 3;4;3} \right)\].

Vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\] là

\[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\4&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&0\\3&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&4\\{ - 3}&4\end{array}} \right|} \right)\]\[ = \left( {4; - 6;12} \right) = 2\left( {2; - 3;6} \right).\]

Suy ra \[\overrightarrow n = \left( {2; - 3;6} \right)\] là một vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\].

Vậy phương trình mặt phẳng \[\left( {ABC} \right)\] là:

\[2\left( {x - 3} \right) + \left( { - 3} \right)\left( {y - 2} \right) + 6\left( {z - 0} \right) = 0\] hay \[2x - 3y + 6z = 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Cho hình lập phương  A B C D . A ′ B ′ C ′ D ′ . Vectơ nào là vectơ pháp tuyến của mặt phẳng  ( A B C D ) ? (ảnh 1)

Ta có: \[ABCD.A'B'C'D'\] là hình lập phương nên \[\overrightarrow {AA'} \bot \left( {ABCD} \right)\].

Do đó, \[\overrightarrow {AA'} \] là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\].

Lời giải

Đáp án đúng là: C

a) Ta có: \[d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.2 - 1 + 2.5 - 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{8}{3}.\]

Vậy ý a đúng.

b) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]

Với \[m = 0\] thì \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {27 - 0} \right|}}{6} = \frac{9}{2}.\]

Vậy ý b đúng.

c) Với \[m = 3\] thì \[\left( Q \right):4x - 2y + 4z - 2 = 0\].

Nhận thấy \[\frac{2}{4} = \frac{{ - 1}}{{ - 2}} = \frac{2}{4} \ne \frac{{ - 5}}{{ - 2}}\] do đó \[\left( P \right)\parallel \left( Q \right)\].

Có \[\left( Q \right):4x - 2y + 4z - 2 = 0\]\[ \Leftrightarrow 2x - y + 2z - 1 = 0\]

Suy ra \[d\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| { - 5 - \left( { - 1} \right)} \right|}}{3} = 2.\]

Vậy ý c sai.

d) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]

Để \[d\left( {M,\left( Q \right)} \right) = 1\] thì \[\frac{{\left| {27 - m} \right|}}{6} = 1\].

\[\left| {27 - m} \right| = 6 \Leftrightarrow \left[ \begin{array}{l}m = 21\\m = 33\end{array} \right.\].

Vậy có 2 giá trị \[m\] để khoảng cách từ \[M\] đến \[\left( Q \right)\] bằng 1. Và tổng của hai giá trị là 54.

Vậy ý d sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP