Câu hỏi:

13/10/2024 24

Trong không gian \[Oxyz\], cho điểm \[A\left( {3; - 2; - 2} \right)\], \[B\left( {3;2;0} \right)\], \[C\left( {0;2;1} \right)\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \[\overrightarrow {AB} = \left( {0;4;2} \right)\], \[\overrightarrow {AC} = \left( { - 3;4;3} \right)\].

Vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\] là

\[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\4&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&0\\3&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&4\\{ - 3}&4\end{array}} \right|} \right)\]\[ = \left( {4; - 6;12} \right) = 2\left( {2; - 3;6} \right).\]

Suy ra \[\overrightarrow n = \left( {2; - 3;6} \right)\] là một vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\].

Vậy phương trình mặt phẳng \[\left( {ABC} \right)\] là:

\[2\left( {x - 3} \right) + \left( { - 3} \right)\left( {y - 2} \right) + 6\left( {z - 0} \right) = 0\] hay \[2x - 3y + 6z = 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

I. Nhận biết

Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?

Xem đáp án » 13/10/2024 154

Câu 2:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 3z - 1 = 0\] và \[\left( Q \right):x + 2y + 3z + 6 = 0\] là

Xem đáp án » 13/10/2024 39

Câu 3:

II. Thông hiểu

Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là

Xem đáp án » 13/10/2024 34

Câu 4:

III. Vận dụng

Trong không gian với hệ tọa độ \[Oxyz\], cho hai mặt phẳng \[\left( P \right):2x + my + 3z - 5 = 0\] và \[\left( Q \right):nx - 8y - 6z + 2 = 0\] với \[m,n \in \mathbb{R}\]. Xác định \[m,n\] để \[\left( P \right)\] song song với \[\left( Q \right)\].

Xem đáp án » 13/10/2024 31

Câu 5:

Trong không gian \[Oxyz\], cho \[A\left( {0;1;1} \right)\], \[B\left( {1;2;3} \right)\]. Viết phương trình mặt phẳng \[\left( P \right)\] đi qua \[A\] và vuông góc với đường thẳng \[AB\].

Xem đáp án » 13/10/2024 29

Câu 6:

Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là

Xem đáp án » 13/10/2024 29

Câu 7:

Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?

Xem đáp án » 13/10/2024 27

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn