Câu hỏi:

13/10/2024 44

Trong không gian \[Oxyz\], cho điểm \[A\left( {3; - 2; - 2} \right)\], \[B\left( {3;2;0} \right)\], \[C\left( {0;2;1} \right)\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \[\overrightarrow {AB} = \left( {0;4;2} \right)\], \[\overrightarrow {AC} = \left( { - 3;4;3} \right)\].

Vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\] là

\[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\4&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&0\\3&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&4\\{ - 3}&4\end{array}} \right|} \right)\]\[ = \left( {4; - 6;12} \right) = 2\left( {2; - 3;6} \right).\]

Suy ra \[\overrightarrow n = \left( {2; - 3;6} \right)\] là một vectơ pháp tuyến của mặt phẳng \[\left( {ABC} \right)\].

Vậy phương trình mặt phẳng \[\left( {ABC} \right)\] là:

\[2\left( {x - 3} \right) + \left( { - 3} \right)\left( {y - 2} \right) + 6\left( {z - 0} \right) = 0\] hay \[2x - 3y + 6z = 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

I. Nhận biết

Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?

Xem đáp án » 13/10/2024 250

Câu 2:

II. Thông hiểu

Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là

Xem đáp án » 13/10/2024 93

Câu 3:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 3z - 1 = 0\] và \[\left( Q \right):x + 2y + 3z + 6 = 0\] là

Xem đáp án » 13/10/2024 63

Câu 4:

Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là

Xem đáp án » 13/10/2024 56

Câu 5:

Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?

Xem đáp án » 13/10/2024 55

Câu 6:

III. Vận dụng

Trong không gian với hệ tọa độ \[Oxyz\], cho hai mặt phẳng \[\left( P \right):2x + my + 3z - 5 = 0\] và \[\left( Q \right):nx - 8y - 6z + 2 = 0\] với \[m,n \in \mathbb{R}\]. Xác định \[m,n\] để \[\left( P \right)\] song song với \[\left( Q \right)\].

Xem đáp án » 13/10/2024 50

Câu 7:

Trong không gian \[Oxyz\], cho điểm \[M\left( {1;2;3} \right)\]. Gọi \[A,B,C\] lần lượt là hình chiếu vuông góc của điểm \[M\] lên các trục \[Ox,Oy,Oz\]. Phương trình mặt phẳng \[\left( {ABC} \right)\] là

Xem đáp án » 13/10/2024 45

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store