Câu hỏi:

13/10/2024 588

Hãy tìm giá trị thực của \[m\] để góc giữa hai đường thẳng \[d:\left\{ \begin{array}{l}x = 1 + t\\y = - \sqrt 2 t\\z = 1 + t\end{array} \right.,{\rm{ }}t \in \mathbb{R}\] và \[d':\left\{ \begin{array}{l}x = 1 + t'\\y = - \sqrt 2 t'\\z = 1 + mt'\end{array} \right.,{\rm{ }}t' \in \mathbb{R}\] bằng \[60^\circ .\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \[{\overrightarrow u _d} = \left( {1; - \sqrt 2 ;1} \right),{\overrightarrow u _{d'}} = \left( {1; - \sqrt 2 ;m} \right)\].

Suy ra \[\cos \left( {d,d'} \right) = \left| {\cos \left( {{{\overrightarrow u }_d},{{\overrightarrow u }_{d'}}} \right)} \right| = \frac{{\left| {1 + 2 + m} \right|}}{{2.\sqrt {{m^2} + 3} }}\].

Theo đề, góc giữa hai đường thẳng là \[60^\circ \], do đó \[\frac{{\left| {1 + 2 + m} \right|}}{{2.\sqrt {{m^2} + 3} }} = \frac{1}{2}\]

Suy ra \[2\left| {m + 3} \right| = 2\sqrt {\left( {{m^2} + 3} \right)} \]

\[{\left( {m + 3} \right)^2} = \left( {{m^2} + 3} \right)\]

\[6m + 6 = 0\]

\[m = - 1.\]

Vậy \[m = - 1.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \[\overrightarrow {MN} = \left( { - 1;1;0} \right),\overrightarrow {MP} = \left( { - 1;0;1} \right),\]\[{\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;0;1} \right)\].

Suy ra \[{\overrightarrow n _{\left( {MNP} \right)}} = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&0\end{array}} \right|} \right) = \left( {1;1;1} \right).\]

Suy ra \[\cos \left( {\left( {MNP} \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {{{\overrightarrow n }_{\left( {Oxy} \right)}},{{\overrightarrow n }_{\left( {MNP} \right)}}} \right)} \right| = \frac{1}{{\sqrt 3 }}.\]

Lời giải

Đáp án đúng là: D

Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1; - 1} \right)\], \[{\overrightarrow n _{\left( Q \right)}} = \left( {1;0; - 1} \right)\].

Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng

\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left| {{{\overrightarrow u }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right|\]

\[ = \frac{{\left| {1.2 + 0.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}.\]

Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng \[30^\circ .\]

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP