Câu hỏi:
13/10/2024 266Trong không gian \[Oxyz\], cho đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = 1\\y = 2 - t\\z = 3 + 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + mt.\\z = 2 - t\end{array} \right.\] Tìm \[m\] để cosin góc giữa hai đường thẳng bằng \[\frac{{\sqrt 5 }}{5}.\]
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \[{\overrightarrow u _{{d_1}}} = \left( {0; - 1;2} \right),{\overrightarrow u _{{d_2}}} = \left( {1;m; - 1} \right).\]
Suy ra \[\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {{{\overrightarrow u }_{{d_1}}},{{\overrightarrow u }_{{d_2}}}} \right)} \right| = \frac{{\left| { - m - 2} \right|}}{{\sqrt 5 .\sqrt {{m^2} + 2} }}\].
Để góc giữa hai đường thẳng bằng \[\frac{{\sqrt 5 }}{5}\] thì
\[\frac{{\left| { - m - 2} \right|}}{{\sqrt 5 .\sqrt {{m^2} + 2} }} = \frac{{\sqrt 5 }}{5}\]
\[5\left| { - m - 2} \right| = 5\sqrt {{m^2} + 2} \]
\[{\left( {m + 2} \right)^2} = {m^2} + 2\]
\[{m^2} + 4m + 4 = {m^2} + 2\]
\[m = - \frac{1}{2}.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \[\overrightarrow {MN} = \left( { - 1;1;0} \right),\overrightarrow {MP} = \left( { - 1;0;1} \right),\]\[{\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;0;1} \right)\].
Suy ra \[{\overrightarrow n _{\left( {MNP} \right)}} = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&0\end{array}} \right|} \right) = \left( {1;1;1} \right).\]
Suy ra \[\cos \left( {\left( {MNP} \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {{{\overrightarrow n }_{\left( {Oxy} \right)}},{{\overrightarrow n }_{\left( {MNP} \right)}}} \right)} \right| = \frac{1}{{\sqrt 3 }}.\]
Lời giải
Đáp án đúng là: D
Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1; - 1} \right)\], \[{\overrightarrow n _{\left( Q \right)}} = \left( {1;0; - 1} \right)\].
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng
\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left| {{{\overrightarrow u }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right|\]
\[ = \frac{{\left| {1.2 + 0.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}.\]
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng \[30^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.