Câu hỏi:

13/10/2024 348 Lưu

Trong không gian \[Oxyz\] cho hình chóp \[S.ABCD\] có \[S\left( {0;0;\frac{{a\sqrt 3 }}{2}} \right),\]\[A\left( {\frac{a}{2};0;0} \right),\]\[B\left( { - \frac{a}{2};0;0} \right)\], \[C\left( { - \frac{a}{2};a;0} \right)\],\[D\left( {\frac{a}{2};a;0} \right)\] với \[a > 0\]. Tính góc giữa đường thẳng \[SD\] và mặt phẳng \[\left( {SAC} \right)\]. (Kết quả làm tròn đến hàng đơn vị của độ).

A. \[28^\circ \].

B. \[38^\circ \].

C. \[26^\circ \].

D. \[31^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

rong không gian  O x y z  cho hình chóp  S . A B C D  có  S ( 0 ; 0 ; a √ 3 / 2 ) , A ( a 2 ; 0 ; 0 ) , B ( − a/ 2 ; 0 ; 0 ) ,  C ( − a/ 2 ; a ; 0 ) , D ( a 2 ; a ; 0 )  với  a > 0 . Tính góc giữa đường thẳng  S D  và mặt phẳng  ( S A C ) . (Kết quả làm tròn đến hàng đơn vị của độ). (ảnh 1)

Ta có: \[\overrightarrow {SD} = \left( {\frac{a}{2};a; - \frac{{a\sqrt 3 }}{2}} \right) = a\left( {\frac{1}{2};1; - \frac{{\sqrt 3 }}{2}} \right)\],

\[\overrightarrow {SA} = \left( {\frac{a}{2};0; - \frac{{a\sqrt 3 }}{2}} \right) = a\left( {\frac{1}{2};0; - \frac{{\sqrt 3 }}{2}} \right)\],

\[\overrightarrow {SC} = \left( { - \frac{a}{2};a; - \frac{{a\sqrt 3 }}{2}} \right) = a\left( { - \frac{1}{2};1; - \frac{{\sqrt 3 }}{2}} \right)\].

Vectơ pháp tuyến của mặt phẳng \[\left( {SAC} \right)\] là \[\overrightarrow n = \left[ {\overrightarrow {SA} ,\overrightarrow {SC} } \right]\].

Ta có: \[\overrightarrow n = \left[ {\overrightarrow {SA} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - \frac{{\sqrt 3 }}{2}}\\1&{ - \frac{{\sqrt 3 }}{2}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - \frac{{\sqrt 3 }}{2}}&{\frac{1}{2}}\\{ - \frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{1}{2}}&0\\{ - \frac{1}{2}}&1\end{array}} \right|} \right) = \left( {\frac{{\sqrt 3 }}{2};\frac{{\sqrt 3 }}{2};\frac{1}{2}} \right).\]

Ta có: \[\sin \left( {SD,\left( {SAC} \right)} \right) = \left| {\cos \left( {\overrightarrow {SD} ,{{\overrightarrow n }_{\left( {SAC} \right)}}} \right)} \right|\]

\[ = \frac{{\left| {\frac{{\sqrt 3 }}{2}.\frac{1}{2} + 1.\frac{{\sqrt 3 }}{2} + \left( { - \frac{{\sqrt 3 }}{2}} \right).\frac{1}{2}} \right|}}{{\sqrt {{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} .\sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {1^2} + {{\left( { - \frac{{\sqrt 3 }}{2}} \right)}^2}} }}\]

\[ = \frac{{\sqrt {42} }}{{14}}.\]

Suy ra \[\widehat {\left( {SD,\left( {SAC} \right)} \right)} \approx 28^\circ .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \[\overrightarrow {MN} = \left( { - 1;1;0} \right),\overrightarrow {MP} = \left( { - 1;0;1} \right),\]\[{\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;0;1} \right)\].

Suy ra \[{\overrightarrow n _{\left( {MNP} \right)}} = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&0\end{array}} \right|} \right) = \left( {1;1;1} \right).\]

Suy ra \[\cos \left( {\left( {MNP} \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {{{\overrightarrow n }_{\left( {Oxy} \right)}},{{\overrightarrow n }_{\left( {MNP} \right)}}} \right)} \right| = \frac{1}{{\sqrt 3 }}.\]

Lời giải

Đáp án đúng là: C

Ta có: \[\overrightarrow {SA} = \left( {0;0; - 3} \right),\overrightarrow {SB} = \left( {1;0; - 3} \right),\overrightarrow {SC} = \left( {0;2; - 3} \right)\], \[\overrightarrow {AB} = \left( {1;0;0} \right)\], \[\overrightarrow {AC} = \left( {0;2;0} \right)\].

Suy ra \[{\overrightarrow n _{\left( {SAB} \right)}} = \left[ {\overrightarrow {SA} ,\overrightarrow {SB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\0&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&0\\{ - 3}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right|} \right) = \left( {0; - 3;0} \right).\]

\[{\overrightarrow n _{\left( {SBC} \right)}} = \left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&2\end{array}} \right|} \right) = \left( {6;3;2} \right).\]

\[{\overrightarrow n _{\left( {ABC} \right)}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&2\end{array}} \right|} \right) = \left( {0;0;2} \right).\]

\[{\overrightarrow n _{\left( {SAC} \right)}} = \left[ {\overrightarrow {SA} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&0\\{ - 3}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&0\\0&2\end{array}} \right|} \right) = \left( { - 6;0;0} \right).\]

a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng

\[\cos \left( {\left( {SAB} \right),\left( {ABC} \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SAB} \right)}},{{\overrightarrow n }_{\left( {ABC} \right)}}} \right) = 0.\]

Do đó, ý a đúng.

b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng

\[\cos \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SBC} \right)}},{{\overrightarrow n }_{\left( {ABC} \right)}}} \right) = \frac{{\left| {6.0 + 3.0 + 2.2} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} .\sqrt {{0^2} + {0^2} + {2^2}} }} = \frac{2}{7}.\]

Do đó, ý b đúng.

c) Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {1;1;1} \right)\].

Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng

\[\cos \left( {\left( {SBC} \right),\left( P \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SBC} \right)}},{{\overrightarrow n }_{\left( P \right)}}} \right) = \frac{{\left| {6.1 + 3.1 + 2.1} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{11\sqrt 3 }}{{21}}.\]

Do đó, ý c sai.

d) Ta có:

\[\cos \left( {\left( {SAC} \right),\left( {ABC} \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SAC} \right)}},{{\overrightarrow n }_{\left( {ABC} \right)}}} \right) = \frac{{\left| { - 6.0 + 0.0 + 0.2} \right|}}{{\sqrt {{{\left( { - 6} \right)}^2} + {0^2} + {0^2}} .\sqrt {{0^2} + {0^2} + {2^2}} }} = 0.\]

Vậy góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]

Vậy ý d đúng.

Vậy có 3 mệnh đề đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( \alpha \right):3x + z = 0.\]

B. \[\left( \alpha \right):x - y - 3z = 0.\]

C. \[\left( \alpha \right):x + 3z = 0.\]

D. \[\left( \alpha \right):3x + z = 0\] hoặc \[\left( \alpha \right):8x + 5y + z = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \cos \left| {\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right|.\]

B. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]

C. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}.\]

D. \[\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\] hoặc \[\left( {{\Delta _1},{\Delta _2}} \right) = 180^\circ - \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP