Câu hỏi:
14/10/2024 1,548I. Nhận biết
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Vectơ nào sau đây cùng phương với \(\overrightarrow {BC} \) ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Vectơ cùng phương với \(\overrightarrow {BC} \) là \(\overrightarrow {DA} .\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
III. Vận dụng
Một chiếc đèn chùm treo có khối lượng \(m = 5\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,SB,SC,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \). Biết \(\overrightarrow P = m.\overrightarrow g \) trong đó \(\overrightarrow g \) là vectơ gia tốc rơi tự do có độ lớn \(10\)m/s2, \(\overrightarrow P \) là trọng lượng của vật có đơn vị kg.
Khi đó:
a) \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} \) là 4 vectơ đồng phẳng.
b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| = \left| {\overrightarrow {SD} } \right|.\)
c) Độ lớn của trọng lực \(\overrightarrow P \) tác động lên chiếc đèn chùm bằng \(50N\).
d) Độ lớn của lực căng cho mỗi sợi xích bằng \(\frac{{25\sqrt 3 }}{2}N\).
Số mệnh đề đúng trong các mệnh đề trên là:
Câu 2:
Cho hình lăng trụ \(ABC.A'B'C'\) đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c .\) Gọi \(G'\) là trọng tâm của tam giác \(A'B'C'\). Vectơ \(\overrightarrow {AG'} \) bằng
Câu 3:
Cho hình chóp \(S.ABC\) có \(AB = 4\), \(\widehat {BAC} = 60^\circ \), \(\overrightarrow {AB} .\overrightarrow {AC} = 6\). Khi đó độ dài \(\overrightarrow {AC} \) là
Câu 4:
Cho hình lập phương \(ABCD.EFGH\) có cạnh bằng \(a\). Ta có: \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng:
Câu 5:
Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4\); \(\left| {\overrightarrow b } \right| = 3\); \(\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Chọn khẳng định đúng ?
Câu 6:
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(M\) là trung điểm của \(BC\).
Tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {DM} } \right)\).
về câu hỏi!