Câu hỏi:
14/10/2024 42Trong không gian với hệ trục \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\). Biết \(A\left( {2;4;0} \right)\), \(B\left( {4;0;0} \right)\), \(C\left( { - 1;4; - 7} \right)\) và \(D'\left( {6;8;10} \right)\). Tìm tọa độ điểm \(B'\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Do \(ABCD.A'B'C'D'\) là hình hộp nên \(\overrightarrow {AB} = \overrightarrow {DC} \).
Gọi \(D\left( {x;y;z} \right)\), suy ra \(\left\{ \begin{array}{l} - 1 - x = 4 - 2\\4 - y = 0 - 4\\ - 7 - z = 0 - 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 8\\x = - 7\end{array} \right.\) ⇒ \(D\left( { - 3;8;7} \right)\).
Gọi \(B'\left( {{x_1};{y_1};{z_1}} \right)\), có \(\overrightarrow {DD'} = \overrightarrow {BB'} \) hay \(\left\{ \begin{array}{l}{x_1} - 4 = 6 - \left( { - 3} \right)\\{y_1} - 0 = 8 - 8\\{z_1} - 0 = 10 - \left( { - 7} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = 13\\{y_1} = 0\\{z_1} = 17\end{array} \right.\) ⇒ \(B'\left( {13;0;17} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông có các cạnh bằng 1, \(SAD\) là tam giác đều và nằm trong mặt phẳng với đáy. Gọi \(O\), \(M\) và \(N\) lần lượt là trung điểm của \(AD\), \(BC\) và \(CD\). Thiết lập hệ trục tọa độ \(Oxyz\) như hình vẽ.
a) Tọa độ các điểm \(A,B\) là \(A\left( {0; - \frac{1}{2};0} \right),B\left( {1; - \frac{1}{2};0} \right).\)
b) Tọa độ các điểm \(C,D\) là \(C\left( {1;\frac{1}{2};0} \right),D\left( {0;\frac{1}{2};0} \right).\)
c) Tọa độ điểm \(S\) là điểm \(S\left( {0;0;\frac{{\sqrt 3 }}{2}} \right).\)
d) Tọa độ các điểm \(M,N\) là \(M\left( {1;0;0} \right),N\left( {\frac{1}{2};\frac{1}{2};0} \right).\)
Khi đó, số mệnh đề đúng trong các mệnh đề là:
Câu 2:
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = OB = 2a\), \(OC = a\sqrt 2 \). Khi đó vectơ \(\overrightarrow {AB} \left( {m;n;p} \right)\). Khi \(a = 1\) hãy tính giá trị của biểu thức \(T = m + n + p.\)
Câu 3:
Trong không gian với hệ trục \(Oxyz\), cho hình bình hành \(ABCD\) có tâm \(I\) có tọa độ các đỉnh \(B\left( {3;1;0} \right)\), \(D\left( {0;4; - 6} \right)\). Tọa độ điểm \(I\) là
Câu 4:
II. Thông hiểu
Trong không gian với hệ trục \(Oxyz\), cho hình bình hành \(ABCD\) và các đỉnh có tọa độ lần lượt là \(A\left( {3;1;2} \right),B\left( {1;0;1} \right),C\left( {2;3;0} \right)\). Tọa độ đỉnh \(D\) là
Câu 5:
Trong không gian \(Oxyz\), cho \(A\left( {2; - 1;0} \right)\) và \(B\left( {1;1; - 3} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là
Câu 6:
Ở một sân bay, vị trí của máy bay được xác định bởi điểm \(M\) trong không gian \(Oxyz\) như hình bên. Gọi \(H\) là hình chiếu vuông góc của \(M\) xuống mặt phẳng \(\left( {Oxy} \right)\). Biết \(OM = 70,\left( {\overrightarrow i ,\overrightarrow {OH} } \right) = 64^\circ \), \(\left( {\overrightarrow {OH} ,\overrightarrow {OM} } \right) = 48^\circ \). Tìm tọa độ điểm \(M\).
Câu 7:
Trong không gian \(Oxyz\), cho \(M\left( {8;4;3} \right)\). Khi đó:
a) Hình chiếu vuông góc của \(M\) trên trục \(Ox\) là điểm \(\left( {0;4;3} \right)\).
b) Hình chiếu vuông góc của \(M\) trên trục \(Oz\) là điểm \(\left( {0;0;3} \right)\).
c) Hình chiếu vuông góc của \(M\) trên trục \(Oxz\) là điểm \(\left( {8;0;3} \right)\).
d) \(\overrightarrow {OM} = 8\overrightarrow i + 4\overrightarrow j + 3\overrightarrow k .\)
Số mệnh đề đúng trong các mệnh đề trên là:
về câu hỏi!