Trong không gian với hệ trục \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có điểm \(A\) trùng với gốc tọa độ \(O\), điểm \(B\) nằm trên tia \(Ox\), điểm \(D\) nằm trên tia \(Oy\), điểm \(A'\) nằm trên tia \(Oz\). Biết \(AB = 2,AD = 4,AA' = 3\). Gọi tọa độ \(C'\) là \(\left( {a;b;c} \right)\) khi đó biểu thức \(a + b - c\) có giá trị là
A. \( - 4.\)
B. \(9.\)
C. \(3.\)
D. \(6.\)
Quảng cáo
Trả lời:

Đáp án đúng là: C
Theo đề bài, có điểm \(A\) trùng với gốc tọa độ \(O\) nên \(A\left( {0;0;0} \right)\);
điểm \(B\) nằm trên tia \(Ox\) nên \(B\left( {x;0;0} \right)\);
điểm \(D\) nằm trên tia \(Oy\) nên \(D\left( {0;y;0} \right)\);
điểm \(A'\) nằm trên tia \(Oz\) nên \(A'\left( {0;0;z} \right)\).
Theo đề, có \(AB = 2,AD = 4,AA' = 3\) hay \(B\left( {2;0;0} \right),D\left( {0;4;0} \right),A'\left( {0;0;3} \right).\)
Ta có \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(\overrightarrow {AB} = \overrightarrow {DC} \).
Gọi \(C\left( {{x_C};{y_C};{z_C}} \right)\), ta được: \(\left\{ \begin{array}{l}{x_C} - 0 = 2\\{y_C} - 4 = 0\\{z_C} - 0 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 2\\{y_C} = 4\\{z_C} = 0\end{array} \right.\) ⇒ \(C\left( {2;4;0} \right)\).
Lại có, \(\overrightarrow {AA'} = \overrightarrow {CC'} \), ta được: \(\left\{ \begin{array}{l}a - 2 = 0\\b - 4 = 0\\c - 0 = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 4\\c = 3\end{array} \right.\).
Vậy \(a + b - c = 2 + 4 - 3 = 3\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Từ quan sát hình vẽ và đề bài, ta có trung điểm \(AB\) là điểm \(O\) cũng chính là gốc tọa độ.
Quan sát hình, ta có: \(A\left( {0; - \frac{1}{2};0} \right),B\left( {1; - \frac{1}{2};0} \right)\) nên ý a đúng.
\(C\left( {1;\frac{1}{2};0} \right),D\left( {0;\frac{1}{2};0} \right)\) nên ý b đúng.
Có tam giác \(SAD\) đều nên đường cao \(SO = \frac{{\sqrt 3 }}{2}\). Mà \(S\) thuộc trục \(Oz\) nên \(S\left( {0;0;\frac{{\sqrt 3 }}{2}} \right)\), do đó ý c đúng.
Tọa độ các điểm \(M,N\) là \(M\left( {1;0;0} \right),N\left( {\frac{1}{2};\frac{1}{2};0} \right)\) nên ý d đúng.
Vậy có 4 mệnh đề đúng.
Câu 2
A. \(\left( {\frac{3}{2};\frac{5}{2}; - 3} \right).\)
B. \(\left( {3;5; - 6} \right).\)
C. \(\left( { - \frac{3}{2};\frac{3}{2}; - 3} \right).\)
D. \(\left( { - 3;5; - 6} \right).\)
Lời giải
Đáp án đúng là: A
Gọi \(I\left( {x;y;z} \right)\).
Ta có \(I\) là tâm của hình bình hành \(ABCD\) nên \(\overrightarrow {BI} = \overrightarrow {ID} \).
Ta có: \(\overrightarrow {BI} = \left( {x - 3;y - 1;z} \right)\), \(\overrightarrow {ID} = \left( { - x;4 - y; - 6 - z} \right)\).
Suy ra, ta được: \(\left\{ \begin{array}{l}x - 3 = - x\\y - 1 = 4 - y\\z = - 6 - z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{3}{2}\\y = \frac{5}{2}\\z = - 3\end{array} \right.\) ⇒ \(I\left( {\frac{3}{2};\frac{5}{2}; - 3} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(M\left( {37,2;14,7;30,1} \right).\)
B. \(M\left( {14,7;37,2;30,1} \right).\)
C. \(M\left( {30,1;14,7;37,2} \right).\)
D. \(M\left( {14,7;30,1;37,2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( { - 1;2; - 3} \right).\)
B. \(\left( {1; - 2;3} \right).\)
C. \(\left( { - 1; - 2;3} \right).\)
D. \(\left( {1; - 2;3} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left( {1;1;0} \right).\)
B. \(\left( {0;2; - 1} \right).\)
C. \(\left( {4;4;1} \right).\)
D. \(\left( {1;3; - 1} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.