Câu hỏi:

14/10/2024 261 Lưu

Trong không gian với hệ trục \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có điểm \(A\) trùng với gốc tọa độ \(O\), điểm \(B\) nằm trên tia \(Ox\), điểm \(D\) nằm trên tia \(Oy\), điểm \(A'\) nằm trên tia \(Oz\). Biết \(AB = 2,AD = 4,AA' = 3\). Gọi tọa độ \(C'\) là \(\left( {a;b;c} \right)\) khi đó biểu thức \(a + b - c\) có giá trị là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Theo đề bài, có điểm \(A\) trùng với gốc tọa độ \(O\) nên \(A\left( {0;0;0} \right)\);

điểm \(B\) nằm trên tia \(Ox\) nên \(B\left( {x;0;0} \right)\);

điểm \(D\) nằm trên tia \(Oy\) nên \(D\left( {0;y;0} \right)\);

điểm \(A'\) nằm trên tia \(Oz\) nên \(A'\left( {0;0;z} \right)\).

Theo đề, có \(AB = 2,AD = 4,AA' = 3\) hay \(B\left( {2;0;0} \right),D\left( {0;4;0} \right),A'\left( {0;0;3} \right).\)

Ta có \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(\overrightarrow {AB} = \overrightarrow {DC} \).

Gọi \(C\left( {{x_C};{y_C};{z_C}} \right)\), ta được: \(\left\{ \begin{array}{l}{x_C} - 0 = 2\\{y_C} - 4 = 0\\{z_C} - 0 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 2\\{y_C} = 4\\{z_C} = 0\end{array} \right.\) ⇒ \(C\left( {2;4;0} \right)\).

Lại có, \(\overrightarrow {AA'} = \overrightarrow {CC'} \), ta được: \(\left\{ \begin{array}{l}a - 2 = 0\\b - 4 = 0\\c - 0 = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 4\\c = 3\end{array} \right.\).

Vậy \(a + b - c = 2 + 4 - 3 = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Từ quan sát hình vẽ và đề bài, ta có trung điểm \(AB\) là điểm \(O\) cũng chính là gốc tọa độ.

Quan sát hình, ta có: \(A\left( {0; - \frac{1}{2};0} \right),B\left( {1; - \frac{1}{2};0} \right)\) nên ý a đúng.

\(C\left( {1;\frac{1}{2};0} \right),D\left( {0;\frac{1}{2};0} \right)\) nên ý b đúng.

Có tam giác \(SAD\) đều nên đường cao \(SO = \frac{{\sqrt 3 }}{2}\). Mà \(S\) thuộc trục \(Oz\) nên \(S\left( {0;0;\frac{{\sqrt 3 }}{2}} \right)\), do đó ý c đúng.

Tọa độ các điểm \(M,N\) là \(M\left( {1;0;0} \right),N\left( {\frac{1}{2};\frac{1}{2};0} \right)\) nên ý d đúng.

Vậy có 4 mệnh đề đúng.

Câu 2

Lời giải

Đáp án đúng là: A

Gọi \(I\left( {x;y;z} \right)\).

Ta có \(I\) là tâm của hình bình hành \(ABCD\) nên \(\overrightarrow {BI} = \overrightarrow {ID} \).

Ta có: \(\overrightarrow {BI} = \left( {x - 3;y - 1;z} \right)\), \(\overrightarrow {ID} = \left( { - x;4 - y; - 6 - z} \right)\).

Suy ra, ta được: \(\left\{ \begin{array}{l}x - 3 = - x\\y - 1 = 4 - y\\z = - 6 - z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{3}{2}\\y = \frac{5}{2}\\z = - 3\end{array} \right.\) ⇒ \(I\left( {\frac{3}{2};\frac{5}{2}; - 3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP