Biết \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = {x^2} + 4\] và \[F\left( 0 \right) = 4\]. Tính \[F\left( 3 \right).\]
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx = \int {\left( {{x^2} + 4} \right)dx} } \]\[ = \frac{{{x^3}}}{3} + 4x + C.\]
Mà \[F\left( 0 \right) = 4\] nên C = 4.
Suy ra \[F\left( x \right) = \frac{{{x^3}}}{3} + 4x + 4.\]
Vậy \[F\left( 3 \right) = \frac{{{3^3}}}{3} + 4.3 + 4 = 25.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \[\int {f\left( x \right)dx} = \int {\left( {2x + 6} \right)} dx = {x^2} + 6x + C.\]
Lời giải
Đáp án đúng là: B
Ta có: \[\int {{x^{2022}}} dx = \frac{{{x^{2023}}}}{{2023}} + C.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.