Câu hỏi:
14/10/2024 219III. Vận dụng
Một vật chuyển động với gia tốc \[a\left( t \right) = 3{t^2} + t{\rm{ }}\left( {m/{s^2}} \right)\]. Biết rằng vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right).\] Vận tốc của vật đó sau hai giây là.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Phương trình vận tốc của vật là \[v\left( t \right) = \int {a\left( t \right)} dt = \int {\left( {3{t^2} + t} \right)dt} = {t^3}{\rm{ + }}\frac{{{t^2}}}{2}{\rm{ + C}}{\rm{. }}\]
Mà vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right)\] hay \[v\left( 0 \right) = 2{\rm{ }}\left( {m/s} \right)\].
Do đó, ta có C = 2.
Suy ra \[v\left( t \right) = {t^3} + \frac{{{t^2}}}{2} + 2.\]
Vậy vận tốc của vật đó sau 2 giây là: \[v\left( 2 \right) = {2^3} + \frac{{{2^2}}}{2} + 2 = 12{\rm{ }}\left( {m/s} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \[t\] giây (coi \[t = 0\] là thời điểm viên đạn được bắn lên trên), vận tốc của nó được cho bởi \[v\left( t \right) = 25 - 9,8t{\rm{ }}\left( {m/s} \right)\]. Độ cao của viên đạn (tính từ mặt đất lên) đạt giá trị lớn nhất là
Câu 2:
Hàm số nào dưới đây không là nguyên hàm của hàm số \[y = {x^{2022}}\]?
Câu 3:
Tìm nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - 2{x^2} + x - 2019\]
Câu 4:
Hàm số \[F\left( x \right) = \frac{1}{3}{x^3}\] là một nguyên hàm của hàm số nào sau đây trên \[\left( { - \infty ; + \infty } \right).\]
Câu 5:
Cho hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên \[K\]. Trong các mệnh đều sau, mệnh đề nào sai?
Câu 6:
II. Thông hiểu
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 2x + 6\] là
về câu hỏi!