Câu hỏi:

14/10/2024 1,757 Lưu

Cho hình phẳng D giới hạn bởi đường cong \[y = {e^x}\], trục hoành và các đường thẳng \[x = 0,x = 1\]. Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng

A. \[V = \frac{{\pi \left( {{e^2} + 1} \right)}}{2}.\]

B. \[V = \frac{{{e^2} - 1}}{2}.\]

C. \[V = \frac{{\pi {e^2}}}{3}.\]

D. \[V = \frac{{\pi \left( {{e^2} - 1} \right)}}{2}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \[V = \pi \int\limits_0^1 {{e^{2x}}dx} = \left. {\pi \frac{{{e^{2x}}}}{2}} \right|_0^1 = \frac{{\pi \left( {{e^2} - 1} \right)}}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \[V = \pi \int\limits_0^1 {{{\left( {{x^2} - 2x} \right)}^2}dx = } \pi \int\limits_0^1 {\left( {{x^4} - 4{x^3} + 4{x^2}} \right)dx} \]

\[ = \left. {\pi \left( {\frac{{{x^5}}}{5} - {x^4} + \frac{4}{3}{x^3}} \right)} \right|_0^1 = \frac{{8\pi }}{{15}}.\]

Câu 2

A. \[S = \int\limits_a^b {{f^2}\left( x \right)dx.} \]

B. \[S = \int\limits_a^b {f\left( x \right)dx.} \]

C. \[S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx.} \]

D. \[S = \pi \int\limits_a^b {\left| {f\left( x \right)} \right|dx.} \]

Lời giải

Đáp án đúng là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP