Câu hỏi:

14/10/2024 4,254

Một li rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bổ dọc cốc thành 2 phần bằng nhau) là một đường parabol.

Một li rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bổ dọc cốc thành 2 phần bằng nhau) là một đường parabol. Thể tích tối đa mà cốc có thể chứa được là (làm  (ảnh 1)

Thể tích tối đa mà cốc có thể chứa được là (làm tròn kết quả đến hai chữ số thập phân).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Gắn phần miệng li đựng nước vào hệ trục tọa độ, với đỉnh trùng với gốc tọa độ.

Lúc này, ta được parabol đi qua các điểm (0; 0), (−4; 10); (4; 10).

Một li rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bổ dọc cốc thành 2 phần bằng nhau) là một đường parabol. Thể tích tối đa mà cốc có thể chứa được là (làm  (ảnh 2)

Gọi phương trình parabol là: \[y = a{x^2} + bx + c\] \[\left( {a \ne 0} \right)\].

Ta có: \[\left\{ \begin{array}{l}c = 0\\16a - 4b + c = 10\\16a + 4b + c = 10\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 0\\a = \frac{5}{8}\\b = 0\end{array} \right.\].

Vậy \[y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y \Leftrightarrow x = \sqrt {\frac{8}{5}y} \]

Thể tích tối đa mà cốc có thể chứa nước là

\[V = \pi {\int\limits_0^{10} {\left( {\sqrt {\frac{8}{5}} y} \right)} ^2}dy = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)dy = \left. {\pi \frac{4}{5}{y^2}} \right|_0^{10}} = 80\pi \approx 251,33\] cm3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \[V = \pi \int\limits_0^1 {{{\left( {{x^2} - 2x} \right)}^2}dx = } \pi \int\limits_0^1 {\left( {{x^4} - 4{x^3} + 4{x^2}} \right)dx} \]

\[ = \left. {\pi \left( {\frac{{{x^5}}}{5} - {x^4} + \frac{4}{3}{x^3}} \right)} \right|_0^1 = \frac{{8\pi }}{{15}}.\]

Lời giải

Đáp án đúng là: A

Xét \[y = \left\{ \begin{array}{l} - x,{\rm{ }}x \le 1\\x - 2{\rm{, }}x > 1\end{array} \right.\], ta có:

\[\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) = - 1\]; \[\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) = - 1\] và \[y\left( 1 \right) = - 1\].

Do đó hàm số liên tục tại \[x = 1.\]

Diện tích hình phẳng cần tính là:

\[S = \int\limits_0^1 {\left( {\frac{{10}}{3}x - {x^2} + x} \right)dx + } \int\limits_1^3 {\left( {\frac{{10}}{3}x - {x^2} - x + 2} \right)dx} \]

\[ = \int\limits_0^1 {\left( {\frac{{13}}{3}x - {x^2}} \right)dx + } \int\limits_1^3 {\left( {\frac{7}{3}x - {x^2} + 2} \right)dx} \]

\[ = \left. {\left( {\frac{{13}}{6}{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 + \left. {\left( {\frac{7}{6}{x^2} - \frac{{{x^3}}}{3} + 2x} \right)} \right|_1^3 = \frac{{13}}{2} = 6,5.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Diện tích \[S\] của hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục \[Ox\] và hai đường thẳng \[x = a,x = b{\rm{ }}\left( {a < b} \right)\] được tính theo công thức

</>

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình phẳng D giới hạn bởi đường cong \[y = {e^x}\], trục hoành và các đường thẳng \[x = 0,x = 1\]. Thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP