Câu hỏi:

14/10/2024 139

Có tất cả bao nhiêu giá trị nguyên của \[m\] để phương trình \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] với \[a = - 2m,b = - m,c = m\] và \[d = 9{m^2} - 28\].

Để phương trình là một mặt cầu thì \[{a^2} + {b^2} + {c^2} - d > 0\]

\[ \Leftrightarrow 4{m^2} + {m^2} + {m^2} - 9{m^2} + 28 > 0\]

\[ \Leftrightarrow - 3{m^2} + 28 > 0\]

\[ \Leftrightarrow {m^2} < \frac{{28}}{3}\]

\[ \Leftrightarrow - \sqrt {\frac{{28}}{3}} < m < \sqrt {\frac{{28}}{3}} \]

\[ \Leftrightarrow - 3,055 < m < 3,055\].

Mà \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 3; - 2; - 1;0;1;2;3} \right\}.\]

Vậy có 7 giá trị thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?

Xem đáp án » 14/10/2024 349

Câu 2:

II. Thông hiểu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - 3 = 0\] và một điểm \[M\left( {4;2; - 2} \right)\]. Mệnh đề nào sau đây là đúng?

Xem đáp án » 14/10/2024 299

Câu 3:

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 2x + 10y + 3z + 1 = 0\] đi qua điểm có tọa độ nào sau đây

Xem đáp án » 14/10/2024 153

Câu 4:

Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu

Xem đáp án » 14/10/2024 150

Câu 5:

Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]

Xem đáp án » 14/10/2024 141

Câu 6:

Điều kiện đề phương trình \[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] là phương trình mặt cầu là

Xem đáp án » 14/10/2024 138

Bình luận


Bình luận