Câu hỏi:

14/10/2024 110

Trong các phương trình sau, phương trình nào là phương trình mặt cầu?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét các đáp án như sau:

Với \[{x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\] ta có: \[a = - 1,b = - 1,c = 1,d = 4\].

Suy ra \[{a^2} + {b^2} + {c^2} - d = - 1 < 0.\]

Vậy đáp án A không là phương trình mặt cầu.

• Với \[{x^2} + {y^2} + {z^2} + 4x - 2y + 2z + 6 = 0\] ta có: \[a = - 2,b = 1,c = - 1,d = 6\].

Suy ra \[{a^2} + {b^2} + {c^2} - d = 0\]

Vậy đáp án B không là phương trình mặt cầu.

• Với \[{x^2} + {y^2} + {z^2} + 2x - 6y + 4z + 14 = 0\] có: \[a = - 1,b = 3,c = - 2,d = 14\].

Suy ra \[{a^2} + {b^2} + {c^2} - d = 0\]

Vậy đáp án C không là phương trình mặt cầu.

• Với \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\] có: \[a = - 4,b = 3,c = - 1,d = - 10\].

Suy ra \[{a^2} + {b^2} + {c^2} - d = 36 > 0.\]

Vậy đáp án D là phương trình của một mặt cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?

Xem đáp án » 14/10/2024 350

Câu 2:

II. Thông hiểu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - 3 = 0\] và một điểm \[M\left( {4;2; - 2} \right)\]. Mệnh đề nào sau đây là đúng?

Xem đáp án » 14/10/2024 299

Câu 3:

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 2x + 10y + 3z + 1 = 0\] đi qua điểm có tọa độ nào sau đây

Xem đáp án » 14/10/2024 154

Câu 4:

Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu

Xem đáp án » 14/10/2024 151

Câu 5:

Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]

Xem đáp án » 14/10/2024 142

Câu 6:

Có tất cả bao nhiêu giá trị nguyên của \[m\] để phương trình \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?

Xem đáp án » 14/10/2024 140

Câu 7:

Điều kiện đề phương trình \[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] là phương trình mặt cầu là

Xem đáp án » 14/10/2024 139

Bình luận


Bình luận