Câu hỏi:
16/10/2024 4,142Ở một sân bay, vị trí của máy bay được xác định bởi điểm \(M\) trong không gian \(Oxyz\) như hình bên. Gọi \(H\) là hình chiếu vuông góc của \(M\) xuống mặt phẳng \(\left( {Oxy} \right)\). Biết \(OM = 70,\left( {\overrightarrow i ,\overrightarrow {OH} } \right) = 64^\circ \), \(\left( {\overrightarrow {OH} ,\overrightarrow {OM} } \right) = 48^\circ \). Tìm tọa độ điểm \(M\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có tam giác \(OMH\) vuông tại \(H\) có \(OM = 50,\widehat {OMH} = 48^\circ \) nên ta có:
\(OH = OM.\cos 48^\circ \approx 33,5\); \(OC = MH = OM.\sin 48^\circ \approx 37,2.\)
Tam giác \(OAH\) vuông tại \(A\), \(OH = 33,5;\widehat {OAH} = 64^\circ \) nên ta có:
\(OA = OH.\cos 64^\circ \approx 14,7\); \(OB = AH = OH.\cos 64^\circ \approx 30,1.\)
Có: \(C\left( {0;0;37,2} \right);H\left( {30,1;14,7;0} \right)\).
Ta có: \(\overrightarrow {OC} = \overrightarrow {HM} \) với \(M\left( {x;y;z} \right)\).
Suy ra \(\left\{ \begin{array}{l}x - 30,1 = 0\\y - 14,7 = 0\\z - 37,2 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 30,1\\y = 14,7\\z = 37,2\end{array} \right.\).
Vậy \(M\left( {14,7;30,1;37,2} \right).\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi \(D\left( {x;y;z} \right)\).
Do \(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \).
Ta có: \(\overrightarrow {AB} = \left( { - 2; - 1; - 1} \right)\), \(\overrightarrow {DC} = \left( {x - 2;y - 3;z} \right)\).
Suy ra \(\left\{ \begin{array}{l} - 2 = x - 2\\ - 1 = y - 3\\ - 1 = z\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 2\\z = - 1.\end{array} \right.\)
Vậy tọa độ đỉnh \(D\) là \(\left( {0;2; - 1} \right).\)
Lời giải
Đáp án đúng là: C
Gọi \(M\left( {a;b;c} \right)\).
Ta có: \(\overrightarrow {MA} = \left( {1 - a;1 - b;1 - c} \right)\), \(\overrightarrow {MB} = \left( {5 - a; - 1 - b;2 - c} \right)\), \(\overrightarrow {MC} = \left( {3 - a;2 - b; - 4 - c} \right)\).
Theo đề để \(\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} = \overrightarrow 0 \) thì \(\left\{ \begin{array}{l}1 - a + 2\left( {5 - a} \right) - \left( {3 - a} \right) = 0\\1 - b + 2\left( { - 1 - b} \right) - \left( {2 - b} \right) = 0\\1 - c + 2\left( {2 - c} \right) - \left( { - 4 - c} \right) = 0\end{array} \right.\) ⇒ \(\left\{ \begin{array}{l}a = 4\\b = - \frac{3}{2}\\c = \frac{9}{2}\end{array} \right.\).
Vậy \(M\left( {4; - \frac{3}{2};\frac{9}{2}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.