Câu hỏi:

16/10/2024 180

Có tất cả bao nhiêu giá trị nguyên của \[m\] để phương trình \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] với \[a = - 2m,b = - m,c = m\] và \[d = 9{m^2} - 28\].

Để phương trình là một mặt cầu thì \[{a^2} + {b^2} + {c^2} - d > 0\]

\[ \Leftrightarrow 4{m^2} + {m^2} + {m^2} - 9{m^2} + 28 > 0\]

\[ \Leftrightarrow - 3{m^2} + 28 > 0\]

\[ \Leftrightarrow {m^2} < \frac{{28}}{3}\]

\[ \Leftrightarrow - \sqrt {\frac{{28}}{3}} < m < \sqrt {\frac{{28}}{3}} \]

\[ \Leftrightarrow - 3,055 < m < 3,055\].

Mà \[m \in \mathbb{Z}\] nên \[m \in \left\{ { - 3; - 2; - 1;0;1;2;3} \right\}.\]

Vậy có 7 giá trị thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]

Lời giải

Đáp án đúng là: B

Trong không gian  O x y z , cho mặt cầu  ( S ) : ( x − 1 )^2 + ( y − 2 )^2 + ( z − 3 )^2 = 25  và hình nón  ( H )  có đỉnh  A ( 3 ; 2 ; − 2 )  và nhận  A I  là trục đối xứng với  I  là tâm mặt cầu. Một đường sinh hình nón  ( H )  cắt mặt cầu tại  M , N sao cho  A M = 3 A N . Viết phương trình mặt cầu đồng tâm với mặt cầu  ( S ) , tiếp xúc với các đường sinh của hình nón  ( H ) . (ảnh 1)

Gọi hình chiếu vuông góc của

\[I\] trên \[MN\] là \[K\].

Dễ thấy \[AN = NK = \frac{1}{3}AM\], mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;2;3} \right)\] và bán kính \[R = 5.\]

Có \[AM.AN = A{I^2} - {R^2} = 4\]\[ \Rightarrow A{N^2} = \frac{4}{3}\]

\[ \Rightarrow AN = NK = \frac{{2\sqrt 3 }}{3}\]\[ \Rightarrow IK = \sqrt {I{N^2} - K{N^2}} = \frac{{\sqrt {213} }}{3}.\]

Nhận thấy mặt cầu đồng tâm với mặt cầu \[\left( S \right)\] và tiếp xúc với các đường sinh của hình nón \[\left( H \right)\] chính là mặt cầu tâm \[I\left( {1;2;3} \right)\], bán kính \[IK = \frac{{\sqrt {213} }}{3}.\]

Vậy phương trình mặt cầu cần tìm là: \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}.\]

Lời giải

Đáp án đúng là: D

Gọi \[A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\].

Tam giác \[ABC\] có trọng tâm \[G\left( { - 6; - 12;18} \right)\] nên ta có:

\[\left\{ \begin{array}{l}\frac{{a + 0 + 0}}{3} = - 6\\\frac{{0 + b + 0}}{3} = - 12\\\frac{{0 + 0 + c}}{3} = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 18\\b = - 36\\c = 54\end{array} \right.\].

Suy ra \[A\left( { - 18;0;0} \right),B\left( {0; - 36;0} \right),C\left( {0;0;54} \right)\].

Gọi \[I\left( {x;y;z} \right)\], ta có: \[\left\{ \begin{array}{l}IO = IA\\IA = IB\\IB = IC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}I{O^2} = I{A^2}\\I{A^2} = I{B^2}\\I{B^2} = I{C^2}\end{array} \right.\].

\[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = {\left( {x + 18} \right)^2} + {y^2} + {z^2}\\{\left( {x + 18} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y + 36} \right)^2} + {z^2}\\{x^2} + {\left( {y + 36} \right)^2} + {z^2} = {x^2} + {y^2} + {\left( {z - 54} \right)^2}\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}36x + 324 = 0\\36x + 324 - 72y - 1296 = 0\\72y + 1296 + 108z - 2916 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x = - 9\\y = - 18\\z = 27\end{array} \right.\].

Vậy tâm của mặt cầu là \[I\left( { - 9; - 18;27} \right).\]

Câu 3

Trong các phương trình sau, phương trình nào là phương trình mặt cầu?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phương trình mặt cầu tâm \[I\left( {1; - 2;3} \right)\] bán kính \[R = 3\] là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Xác định tâm và bán kính mặt cầu \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\] ta được

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay