Câu hỏi:
17/10/2024 76Với \(x \ge 0,\) biểu thức \(\frac{1}{{2 - \sqrt x }}\) viết dưới dạng \(\frac{{a\sqrt x + b}}{{x - 4}}\) với \(a,\,b\) là các số nguyên. Giá trị biểu thức \(a - 2b\) bằng
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Với \(x \ge 0,\) ta có: \[\frac{1}{{2 - \sqrt x }} = \frac{{ - 1}}{{\sqrt x - 2}} = \frac{{ - \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} = \frac{{ - \sqrt x - 2}}{{x - 4}}.\]
Khi đó, ta có \(a = - 1,\,\,b = - 2\) nên \(a - 2b = - 1 - 2 \cdot \left( { - 2} \right) = 3.\)
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Rút gọn biểu thức \(\frac{{x - 4\sqrt x + 4}}{{x - 2\sqrt x }}\) với \(x > 0,\,\,x \ne 4\) ta được kết quả là
Câu 4:
Rút gọn biểu thức \(\sqrt {{a^2}{{\left( {5 - a} \right)}^2}} \) với \(a > 5\) ta được kết quả là
Câu 5:
Giả sử các căn thức đều có nghĩa. Nếu \(\sqrt {x + 10} - \sqrt {x - 10} = 4\) thì \(\sqrt {x + 10} + \sqrt {x - 10} \) bằng
Câu 6:
II. Thông hiểu
Rút gọn biểu thức \(\sqrt {\frac{{4{a^2}}}{3}} - 3\sqrt {\frac{{{a^2}}}{{27}}} \) với \(a > 0,\) ta được kết quả là
Câu 7:
I. Nhận biết
Cho biểu thức \(A < 0.\) Khẳng định nào sau đây là đúng?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!