Câu hỏi:

20/10/2024 153 Lưu

I. Nhận biết

Có mấy bước để giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Để giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số, ta thực hiện các bước như sau:

Bước 1: Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

Bước 2: Cộng hay trừ từng vế hai phương trình của hệ để được một phương trình một ẩn và giải phương trình đó.

Bước 3: Thế giá trị của ẩn tìm được ở Bước 2 vào một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lại. Kết luận nghiệm của hệ.

Vậy có \(3\) bước để giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi số sản phẩm phải làm theo kế hoạch của mỗi xí nghiệp lần lượt là \(x;\,y\) (sản phẩm) \(\left( {0 < x,\,y < 300;\,x,\,y \in \mathbb{Z}} \right).\)

Vì theo kế hoạch hai xí nghiệp sản xuất được \(300\) sản phẩm do đó ra có phương trình \(x + y = 300\,\,\,\left( 1 \right)\)

Vì thực tế, xí nghiệp I sản xuất vượt mức \(15\% ,\) xí nghiệp II sản xuất vượt mức \(10\% ,\) cả hai xí nghiệp làm tổng cộng \(336\) sản phẩm do đó, ta có phương trình \(1,15x + 1,1y = 336\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình

\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{1,15x + 1,1y = 336}\end{array}} \right.\]

\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]

\[\left\{ {\begin{array}{*{20}{c}}{110x + 110y = 33\,\,000}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]

\[\left\{ \begin{array}{l}5x = 600\\x + y = 300\end{array} \right.\]

\[\left\{ {\begin{array}{*{20}{c}}{x = 120}\\{y = 180}\end{array}} \right.\](thỏa mãn)

Vậy theo kế hoạch xí nghiệp II phải làm \(180\) sản phẩm.

 

Câu 2

Lời giải

Đáp án đúng là: A

Vì đồ thị hàm số \(y = {\rm{ax}} + b\) đi qua điểm \(A\left( {2;3} \right)\)nên \(2a + b = 3.\)

Vì đồ thị hàm số \(y = {\rm{ax}} + b\)đi qua điểm \(B\left( {1; - 4} \right)\) nên \( - a + b = - 4.\)

Suy ra \(\left\{ {\begin{array}{*{20}{c}}{2a + b = 3\,\,\,\,\,\,\,\left( 1 \right)}\\{ - a + b = - 4\,\,\,\,\left( 2 \right)}\end{array}} \right.\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra: \(\left( {2a + b} \right) - \left( { - a + b} \right) = 3 - \left( { - 4} \right)\)

\(2a + b + a - b = 7\)

\(3a = 7\)

\(a = \frac{7}{3}\)

Suy ra \(b = \frac{7}{3} - 4 = \frac{{ - 5}}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP