Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1\,\,\,\left( 1 \right)}\\{3x + 2y = 5\,\,\left( 2 \right)}\end{array}} \right..\)Khi giải hệ phương trình bằng phương pháp thế, ta thế \(x\) ở phương trình \(\left( 1 \right)\) vào phương trình \(\left( 2 \right)\), khi đó ta được phương trình một ẩn là:
A. \(y = 2x - 1.\)
B. \(7x + 2 = 5.\)
C. \(7x - 2 = 5.\)
D. \(7x = 7.\)
Quảng cáo
Trả lời:

Đáp án đúng là: C
Ta có \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1\,\,\,\left( 1 \right)}\\{3x + 2y = 5\,\,\left( 2 \right)}\end{array}} \right..\)
Từ \(\left( 1 \right)\) ta có \(y = 2x - 1\,\,\,\left( 3 \right)\)
Thế \(\left( 3 \right)\) vào \(\left( 2 \right)\) ta được \(3x + 2\left( {2x - 1} \right) = 5\) hay \(3x + 4x - 2 = 5\) hay \(7x = 7.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Gọi số sản phẩm phải làm theo kế hoạch của mỗi xí nghiệp lần lượt là \(x;\,y\) (sản phẩm) \(\left( {0 < x,\,y < 300;\,x,\,y \in \mathbb{Z}} \right).\)
Vì theo kế hoạch hai xí nghiệp sản xuất được \(300\) sản phẩm do đó ra có phương trình \(x + y = 300\,\,\,\left( 1 \right)\)
Vì thực tế, xí nghiệp I sản xuất vượt mức \(15\% ,\) xí nghiệp II sản xuất vượt mức \(10\% ,\) cả hai xí nghiệp làm tổng cộng \(336\) sản phẩm do đó, ta có phương trình \(1,15x + 1,1y = 336\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình
\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{1,15x + 1,1y = 336}\end{array}} \right.\]
\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]
\[\left\{ {\begin{array}{*{20}{c}}{110x + 110y = 33\,\,000}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]
\[\left\{ \begin{array}{l}5x = 600\\x + y = 300\end{array} \right.\]
\[\left\{ {\begin{array}{*{20}{c}}{x = 120}\\{y = 180}\end{array}} \right.\](thỏa mãn)
Vậy theo kế hoạch xí nghiệp II phải làm \(180\) sản phẩm.
Câu 2
A. \(a = \frac{7}{3};b = \frac{{ - 5}}{3}.\)
B. \(a = \frac{{ - 7}}{3};b = \frac{{ - 5}}{3}.\)
C. \(a = \frac{7}{3};b = \frac{5}{3}.\)
D. \(a = \frac{{ - 7}}{3};b = \frac{5}{3}.\)
Lời giải
Đáp án đúng là: A
Vì đồ thị hàm số \(y = {\rm{ax}} + b\) đi qua điểm \(A\left( {2;3} \right)\)nên \(2a + b = 3.\)
Vì đồ thị hàm số \(y = {\rm{ax}} + b\)đi qua điểm \(B\left( {1; - 4} \right)\) nên \( - a + b = - 4.\)
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{2a + b = 3\,\,\,\,\,\,\,\left( 1 \right)}\\{ - a + b = - 4\,\,\,\,\left( 2 \right)}\end{array}} \right.\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra: \(\left( {2a + b} \right) - \left( { - a + b} \right) = 3 - \left( { - 4} \right)\)
\(2a + b + a - b = 7\)
\(3a = 7\)
\(a = \frac{7}{3}\)
Suy ra \(b = \frac{7}{3} - 4 = \frac{{ - 5}}{3}.\)
Câu 3
A. \(a = 4;\,b = 0.\)
B. \(a = 2;\,b = 2.\)
C. \(a = 0;\,b = 4.\)
D. \(a = - 2;\,b = - 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( {x;y} \right) = \left( {1;2} \right).\)
B. \(\left( {x;y} \right) = \left( {1; - 2} \right).\)
C. \(\left( {x;y} \right) = \left( { - 1; - 2} \right).\)
D. \(\left( {x;y} \right) = \left( { - 1;2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{31}}{7}.\)
B. \(\frac{{ - 31}}{7}.\)
C. \(\frac{7}{{31}}.\)
D. \(\frac{{ - 7}}{{31}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {x;y} \right) = \left( {3; - 2} \right).\)
B. \(\left( {x;y} \right) = \left( {3;2} \right).\)
C. \(\left( {x;y} \right) = \left( { - 3;2} \right).\)
D. \(\left( {x;y} \right) = \left( { - 3; - 2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left( {1;2} \right).\)
B. \(\left( { - 1;2} \right).\)
C. \(\left( {1; - 2} \right).\)
D. \(\left( { - 1; - 2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.