Câu hỏi:

21/10/2024 169

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x - 2}} + \frac{1}{{2y - 1}} = 2}\\{\frac{2}{{x - 2}} - \frac{3}{{2y - 1}} = 1}\end{array}} \right.\) có nghiệm là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Điều kiện: \(x \ne 2;\,y \ne \frac{1}{2}\)

Đặt \(a = \frac{1}{{x - 2}};\,b = \frac{1}{{2y - 1}}\left( {a \ne 0,\,b \ne 0} \right)\)

Hệ phương trình trở thành: \(\left\{ {\begin{array}{*{20}{c}}{a + b = 2}\\{2a - 3b = 1}\end{array}} \right.\)

Nhân hai vế phương trình thứ nhất với \(3,\) ta được hệ phương trình mới: \(\left\{ {\begin{array}{*{20}{c}}{3a + 3b = 6}\\{2a - 3b = 1}\end{array}} \right.\)

Cộng hai vế của hai phương trình ta được:

\(\begin{array}{l}\left( {3a + 3b} \right) + \left( {2a - 3b} \right) = 6 + 1\\5a = 7\\a = \frac{7}{5}\end{array}\)

Thế \(a = \frac{7}{5}\) vào phương trình thứ nhất ta được:

\(\begin{array}{l}\frac{7}{5} + b = 2\\b = \frac{3}{5}.\end{array}\)

Ta có \(\left\{ {\begin{array}{*{20}{c}}{a = \frac{7}{5}}\\{b = \frac{3}{5}}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x - 2}} = \frac{7}{5}}\\{\frac{1}{{2y - 1}} = \frac{3}{5}}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{x - 2 = \frac{5}{7}}\\{2y - 1 = \frac{5}{3}}\end{array}} \right.\)suy ra \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{19}}{7}}\\{y = \frac{4}{3}}\end{array}} \right.\)(thỏa mãn)

Vậy hệ phương trình đã cho có một nghiệm duy nhất là \(\left( {\frac{{19}}{7};\frac{4}{3}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

 

Các nghiệm của phương trình \(5x + 0y = 2\) được biểu diễn bởi

Lời giải

Đáp án đúng là: C

Ta có: \(5x + 0y = 2\) suy ra \(5x = 2\) suy ra \(x = \frac{2}{5}.\)

Nên các nghiệm của phương trình \(5x + 0y = 2\) được biểu diễn bởi đường thẳng \(x = \frac{2}{5}.\)

Lời giải

Đáp án đúng là: B

Gọi lần lượt số áo tổ thứ nhất, tổ thứ hai may trong \(1\) ngày là \(x,\,y\)(áo). Điều kiện: \(x,\,y \in {\mathbb{N}^*}.\)

Trong \(3\) ngày, tổ thứ nhất may được \(3x\) (chiếc áo).

Trong 5 ngày, tổ thứ hai may được \(5y\) (chiếc áo).

Khi đó cả hai tổ thứ hai may được \(1310\) chiếc áo nên ta có phương trình \(3x + 5y = 1310\,\,\,\left( 1 \right)\)

Vì một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là \(10\) chiếc áo nên ta có phương trình \(x - y = 10\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3x + 5y = 1310}\\{x - y = 10}\end{array}} \right..\)

Câu 4

Hệ phương trình nào sau đây là hệ phương trình bậc nhất hai ẩn?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tất cả các nghiệm của phương trình \(2x + 0y = 1\) được biểu diễn bởi đường thẳng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay