Độ cao \(h\)(mét) của một quả bóng gôn sau khi được đánh \(t\) giây được cho bởi công thức \(h\left( t \right) = t\left( {20 - t} \right).\) Tính thời gian bay của quả bóng từ khi được đánh đến khi chạm đất?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Quả bóng chạm đất khi \(h\left( t \right) = 0,\) do đó ta giải phương trình: \(t\left( {20 - 5t} \right) = 0.\)
Suy ra \(t = 0\) hoặc \(20 - 5t = 0.\)
Suy ra \(t = 0\) hoặc \(t = 20.\)
Vậy thời gian bay của quả bóng từ khi được đánh đến khi chạm đất là \(20 - 0 = 20\)giây.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Gọi lần lượt số áo tổ thứ nhất, tổ thứ hai may trong \(1\) ngày là \(x,\,y\)(áo). Điều kiện: \(x,\,y \in {\mathbb{N}^*}.\)
Trong \(3\) ngày, tổ thứ nhất may được \(3x\) (chiếc áo).
Trong 5 ngày, tổ thứ hai may được \(5y\) (chiếc áo).
Khi đó cả hai tổ thứ hai may được \(1310\) chiếc áo nên ta có phương trình \(3x + 5y = 1310\,\,\,\left( 1 \right)\)
Vì một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là \(10\) chiếc áo nên ta có phương trình \(x - y = 10\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3x + 5y = 1310}\\{x - y = 10}\end{array}} \right..\)
Lời giải
Đáp án đúng là: C
Ta có: \(5x + 0y = 2\) suy ra \(5x = 2\) suy ra \(x = \frac{2}{5}.\)
Nên các nghiệm của phương trình \(5x + 0y = 2\) được biểu diễn bởi đường thẳng \(x = \frac{2}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.