Câu hỏi:

21/10/2024 463 Lưu

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3\sqrt x + 2\sqrt y = 16}\\{2\sqrt x - 3\sqrt y = - 11}\end{array}} \right.\) có nghiệm là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là:

Điều kiện \(x \ge 0,\,y \ge 0\). Đặt \(a = \sqrt x ,\,b = \sqrt y \,\,\left( {a,\,b \ge 0} \right)\)

Hệ phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{3a + 2b = 16}\\{2a - 3b = - 11}\end{array}} \right.\).

Nhân hai vế phương trình thứ nhất với \(3,\) phương trình thứ hai với \(2,\) ta được: \(\left\{ {\begin{array}{*{20}{c}}{9a + 6b = 48}\\{4a - 6b = - 22}\end{array}} \right..\)

Cộng hai vế của hai phương trình ta được: \(\left( {9a + 6b} \right) + \left( {4a - 6b} \right) = 48 - 22\)

\(13a = 26\)

\(a = 2\)

Thế \(a = 2\) vào phương trình thứ nhất ta được: \(3.2 + 2b = 16\) hay \(b = 5\)

Ta có \(\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 5}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{\sqrt x = 2}\\{\sqrt y = 25}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{x = 4}\\{y = 25}\end{array}} \right.\) (thỏa mãn)

Vậy hệ phương trình đã cho có một nghiệm duy nhất \(\left( {4;25} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi lần lượt số áo tổ thứ nhất, tổ thứ hai may trong \(1\) ngày là \(x,\,y\)(áo). Điều kiện: \(x,\,y \in {\mathbb{N}^*}.\)

Trong \(3\) ngày, tổ thứ nhất may được \(3x\) (chiếc áo).

Trong 5 ngày, tổ thứ hai may được \(5y\) (chiếc áo).

Khi đó cả hai tổ thứ hai may được \(1310\) chiếc áo nên ta có phương trình \(3x + 5y = 1310\,\,\,\left( 1 \right)\)

Vì một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là \(10\) chiếc áo nên ta có phương trình \(x - y = 10\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3x + 5y = 1310}\\{x - y = 10}\end{array}} \right..\)

Lời giải

Đáp án đúng là: D

Gọi \(x;\,y\) lần lượt là hệ số của \({\rm{Fe}}\) và \({{\rm{O}}_{\rm{2}}}\) thỏa mãn cân bằng phương trình hóa học \(\left( {x,\,y \in \mathbb{Z}} \right).\)

\[x{\rm{FeO}} + y{{\rm{O}}_{\rm{2}}} \to {\rm{F}}{{\rm{e}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}\]

Theo định luật bảo toàn nguyên tố đối với \({\rm{Fe}}\) và \({\rm{O}}\) ta có:

\(\left\{ {\begin{array}{*{20}{c}}{x = 3}\\{x + 2y = 4}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{x = 3}\\{y = \frac{1}{2}}\end{array}} \right..\)

Ta có: \(3{\rm{FeO}} + \frac{1}{2}{{\rm{O}}_{\rm{2}}} \to {\rm{F}}{{\rm{e}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}\)

Do các hệ số của phương trình hóa học phải là số nguyên nên nhân hai vế phương trình hóa học trên với \(2\) ta được: \(6{\rm{FeO}} + {{\rm{O}}_{\rm{2}}} \to 2{\rm{F}}{{\rm{e}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}\)

Vậy \(x + y = 6 + 1 = 7.\)

 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP