Câu hỏi:
21/10/2024 264III. Vận dụng
Một chiếc thuyền xuôi dòng và ngược dòng trên khúc sông dài \(40\,{\rm{km}}\) hết \(4\)giờ \(30\) phút. Biết thời gian thuyền xuôi dòng \(5\,\,{\rm{km}}\) bằng thời gian thuyền ngược dòng \(4\,\,{\rm{km}}.\)Tính vận tốc dòng nước ?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi vận tốc thật của thuyền \[x\,\left( {{\rm{km/h}}} \right)\]\(\left( {x > 0} \right).\)
vận tốc dòng nước \(y\,\left( {{\rm{km/h}}} \right)\)\(\left( {y > 0} \right).\)
Vận tốc của thuyền khi xuôi dòng là \(x + y\,\left( {{\rm{km/h}}} \right).\)
Vận tốc của thuyền khi ngược dòng là \(x - y\,\left( {{\rm{km/h}}} \right).\)
Thời gian của thuyền khi xuôi dòng là \(\frac{{40}}{{x + y}}\) (giờ).
Thời gian của thuyền khi xuôi dòng là \(\frac{{40}}{{x - y}}\) (giờ).
Đổi: \(4\)giờ \(30\) phút \( = \frac{9}{2}\) giờ.
Vì chiếc thuyền xuôi dòng và ngược dòng trên khúc sông dài \(40\,{\rm{km}}\) hết \(4\)giờ \(30\) phút nên ta có phương trình \(\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = \frac{9}{2}\,\,\,\left( 1 \right)\)
Vì thời gian thuyền xuôi dòng \(5\,\,{\rm{km}}\) bằng thời gian thuyền ngược dòng \(4\,\,{\rm{km}}\) nên ta có phương trình
\(\)\(\frac{5}{{x + y}} = \frac{4}{{x - y}}\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), ta có hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = \frac{9}{2}}\\{\frac{5}{{x + y}} = \frac{4}{{x - y}}}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{\frac{1}{{x + y}} = \frac{1}{{20}}}\\{\frac{1}{{x - y}} = \frac{1}{{16}}}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16}\end{array}} \right.\) suy ra \(\left\{ {\begin{array}{*{20}{c}}{x = 18}\\{y = 2}\end{array}} \right.\)(thỏa mãn)
Vậy vận tốc của dòng nước là \(2\,{\rm{km/h}}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \(5x + 0y = 2\) suy ra \(5x = 2\) suy ra \(x = \frac{2}{5}.\)
Nên các nghiệm của phương trình \(5x + 0y = 2\) được biểu diễn bởi đường thẳng \(x = \frac{2}{5}.\)
Lời giải
Đáp án đúng là: B
Gọi lần lượt số áo tổ thứ nhất, tổ thứ hai may trong \(1\) ngày là \(x,\,y\)(áo). Điều kiện: \(x,\,y \in {\mathbb{N}^*}.\)
Trong \(3\) ngày, tổ thứ nhất may được \(3x\) (chiếc áo).
Trong 5 ngày, tổ thứ hai may được \(5y\) (chiếc áo).
Khi đó cả hai tổ thứ hai may được \(1310\) chiếc áo nên ta có phương trình \(3x + 5y = 1310\,\,\,\left( 1 \right)\)
Vì một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là \(10\) chiếc áo nên ta có phương trình \(x - y = 10\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3x + 5y = 1310}\\{x - y = 10}\end{array}} \right..\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận