Trong 1 cái hộp có 3 bi đỏ, 4 bi vàng, 5 bi xanh cùng chất, cùng kích thước. Một người lấy ngẫu nhiên cùng lúc 4 viên bi. Tính xác suất để số bi đỏ mà người đó lấy được không lớn hơn 2.
Quảng cáo
Trả lời:
Lời giải
Lấy ngẫu nhiên, cùng lúc 4 viên bi trong hộp có 3 bi đỏ, 4 bi vàng và 5 bi xanh nên có số phần tử của không gian mẫu là: \(n(\Omega ) = C_{12}^4\).
Gọi A: “Biến cố trong 4 bi lẫy ngẫu nhiên có 3 bi màu đỏ”.
\(n(A) = C_3^3.C_9^1\)
Xác suất của biến cố A là: \(P(A) = \frac{{C_3^3.C_9^1}}{{C_{12}^4}} = \frac{1}{{55}}\)
Vậy xác suất để số bi đỏ mà người đó lấy được không lớn hơn 2 là \(1 - P(A) = 1 - \frac{1}{{55}} = \frac{{54}}{{55}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm
Hay Δ′ = m + 4 < 0 ⇔ m < −4.
Câu 2
Tính các giới hạn sau \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}}\)
Lời giải
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

