Câu hỏi:

23/10/2024 1,457 Lưu

Trong 1 cái hộp có 3 bi đỏ, 4 bi vàng, 5 bi xanh cùng chất, cùng kích thước. Một người lấy ngẫu nhiên cùng lúc 4 viên bi. Tính xác suất để số bi đỏ mà người đó lấy được không lớn hơn 2.

A. \(\frac{{53}}{{55}}\) 
B. \(\frac{{52}}{{55}}\) 
C. \(\frac{{54}}{{55}}\)          
D. \(\frac{{51}}{{55}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Lấy ngẫu nhiên, cùng lúc 4 viên bi trong hộp có 3 bi đỏ, 4 bi vàng và 5 bi xanh nên có số phần tử của không gian mẫu là: \(n(\Omega ) = C_{12}^4\).

Gọi A: “Biến cố trong 4 bi lẫy ngẫu nhiên có 3 bi màu đỏ”.

\(n(A) = C_3^3.C_9^1\)

Xác suất của biến cố A là: \(P(A) = \frac{{C_3^3.C_9^1}}{{C_{12}^4}} = \frac{1}{{55}}\)

Vậy xác suất để số bi đỏ mà người đó lấy được không lớn hơn 2 là \(1 - P(A) = 1 - \frac{1}{{55}} = \frac{{54}}{{55}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. m ≤ −4.                    
B. m < −4.                    
C. m > 0.    
D. m < 4.

Lời giải

Lời giải

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm

Hay Δ′ = m + 4 < 0 ⇔ m < −4.

Lời giải

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)

Câu 6

A. lim un = −1.             
B. lim un = 0.                
C. lim un = \(\frac{1}{2}\).                
D. lim un = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP