Câu hỏi:
23/10/2024 1,604Người ta quy định mật khẩu của chương trình máy tính gồm 3 kí tự.
Điền các số nguyên vào các ô trống thích hợp:
a) Nếu mỗi kí tự là một chữ số. Hỏi có thể tạo được số mật khẩu khác nhau là: _______
b) Theo quy định mới, nếu mật khẩu vẫn gồm 3 kí tự, nhưng kí tự đầu tiên phải là một chữ cái in hoa trong bảng chữ cái tiếng Anh gồm 26 chữ (từ A đến Z) và 2 kí tự sau là các chữ số (từ 0 đến 9). Theo quy định mới, số mật khẩu tạo được nhiều hơn theo quy định cũ là _______Quảng cáo
Trả lời:
a) Nếu mỗi kí tự là một chữ số. Hỏi có thể tạo được số mật khẩu khác nhau là: 1000
b) Theo quy định mới, nếu mật khẩu vẫn gồm 3 kí tự, nhưng kí tự đầu tiên phải là một chữ cái in hoa trong bảng chữ cái tiếng Anh gồm 26 chữ (từ A đến Z) và 2 kí tự sau là các chữ số (từ 0 đến 9). Theo quy định mới, số mật khẩu tạo được nhiều hơn theo quy định cũ là 1600
Phương pháp giải
a) Giả sử mật khẩu của máy tính gồm 3 ký tự, mỗi ký tự là một chữ số. Sử dụng quy tắc nhân.
b) Giả sử mật khẩu mới của máy tính gồm 3 ký tự , ký tự đầu là một chữ cái in hoa, 2 ký tự sau là một chữ số.
Chọn ký tự đầu tiên là một chữ cái in hoa trong bảng chữ cái tiếng Anh.
Chọn ký tự thứ hai là các chữ số (từ 0 đến 9)
Chọn ký tự thứ ba là các chữ số (từ 0 đến 9)
Lời giải
a) Giả sử mật khẩu của máy tính gồm 3 ký tự, mỗi ký tự là một chữ số.
Chọn ký tự đầu tiên: Có 10 cách chọn.
Chọn ký tự thứ hai: Có 10 cách chọn.
Chọn ký tự thứ ba: Có 10 cách chọn.
Vậy có thể tạo được 10.10.10=1000 mật khẩu khác nhau thỏa mãn bài toán.
b) Giả sử mật khẩu mới của máy tính gồm 3 ký tự , ký tự đầu là một chữ cái in hoa, 2 ký tự sau là một chữ số.
Chọn ký tự đầu tiên là một chữ cái in hoa trong bảng chữ cái tiếng Anh gồm 26 chữ (từ A đến Z): Có 26 cách chọn.
Chọn ký tự thứ hai là các chữ số (từ 0 đến 9): Có 10 cách chọn.
Chọn ký tự thứ ba là các chữ số (từ 0 đến 9): Có 10 cách chọn.
Vậy có thể tạo được 26.10.10 = 2600 mật khẩu khác nhau thỏa mãn bài toán.
Do đó quy định mới có thể tạo được nhiều hơn quy định cũ số mật khẩu khác nhau là:
2600 − 1000 = 1600 (mật khẩu).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm
Hay Δ′ = m + 4 < 0 ⇔ m < −4.
Lời giải
|
ĐÚNG |
SAI |
Chiếc thùng nhận được là hình chóp cụt |
¤ |
¡ |
Cạnh bên của chiếc thùng là 3 dm |
¡ |
¤ |
Thùng có thể chứa được nhiều nhất 42 lít nước |
¤ |
¡ |
Phương pháp giải
b) Cạnh bên của chiếc thùng là độ dài cạnh DD’
Kẻ DQ vuông góc với D’C’
c) Số lít nước mà thùng có thể chứa được nhiều nhất bằng thể tích của hình chóp cụt.
Gọi O và O’ lần lượt là tâm của ABCD và A’B’C’D’
Qua D kẻ DH vuông góc với O’D’
Đáy A’B’C’D’ có cạnh là 6dm
Tính:
O′D′
OD
Lời giải
a) Chiếc thùng nhận được là hình chóp cụt
AB//A'B'
=>AB//(A'B'C'D')
AD//A'D'
=>AD//(A'B'C'D')
=>(A'B'C'D')//(ABCD)
=>Chiếc thùng có dạng hình chóp cụt vì khi bác Hùng cắt bỏ bốn phần như nhau ở bốn góc của tấm tôn vuông, sẽ tạo thành bốn tam giác vuông cân
b) Cạnh bên của chiếc thùng là độ dài cạnh DD’
Kẻ DQ vuông góc với D’C’
Khi đó DQ=2,5dm và D’Q=1,5dm
\(D'{D^2} = D{Q^2} + D'{Q^2} = \frac{{17}}{2} \Rightarrow DD' = \frac{{\sqrt {34} }}{2}\)dm
c) Số lít nước mà thùng có thể chứa được nhiều nhất bằng thể tích của hình chóp cụt.
Gọi O và O’ lần lượt là tâm của ABCD và A’B’C’D’
Qua D kẻ DH vuông góc với O’D’
Đáy A’B’C’D’ có cạnh là 6dm
\(O'D' = \frac{6}{{\sqrt 2 }} = 3\sqrt 2 \,\,({\rm{dm}})\)
\(OD = \frac{3}{{\sqrt 2 }} = \frac{{3\sqrt 2 }}{2}\,\,({\rm{dm}})\)
Xét mặt chứa đường chéo của hình vuông, nó là hình thang cân có chiều cao bằng chiều cao của hình chóp cụt và được \(h = \sqrt {D'{D^2} - D'{H^2}} = \sqrt {\frac{{17}}{2} - {{\left( {3\sqrt 2 - \frac{{3\sqrt 2 }}{2}} \right)}^2}} = 2\,\,(dm)\)
Thể tích cần tìm là \(V = \frac{1}{3}.2.\left( {{3^2} + {6^2} + 3.6} \right) = 42\) lít.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 29)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 8)