Câu hỏi:

25/10/2024 620

I. Nhận biết

Phương trình nào dưới đây là phương trình bậc hai một ẩn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Phương trình bậc hai một ẩn là phương trình có dạng \(a{x^2} + bx + c = 0,\) trong đó \(x\) là ẩn; \(a,\,\,b,\,\,c\) là những số cho trước gọi là hệ số và \(a \ne 0\).

Do đó, phương trình \(2{x^2} - 2022 = 0\) là phương trình bậc hai một ẩn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi năng suất dự định là \(x\) (sản phẩm/giờ, \(x \in {\mathbb{N}^*}\))

Thời gian dự định làm \(70\) sản phẩm là \(\frac{{70}}{x}\) (giờ).

Thời gian thực tế làm \(80\) sản phẩm với năng suất \(x + 5\) (sản phẩm/giờ) là \(\frac{{81}}{{x + 5}}\) (giờ).

Theo đề bài, công nhân hoàn thành trước kế hoạch \(40\) phút (\( = \frac{2}{3}\) giờ).

Ta có phương trình \(\frac{{70}}{x} - \frac{{80}}{{x + 5}} = \frac{2}{3}\)

\(\frac{{35}}{x} - \frac{{40}}{{x + 5}} = \frac{1}{3}\)

\(\frac{{35.3\left( {x + 5} \right)}}{x} - \frac{{40.3.x}}{{x + 5}} = \frac{{1.x.\left( {x + 5} \right)}}{3}\)

\(105\left( {x + 5} \right) - 120x = x\left( {x + 5} \right)\)

\({x^2} + 5x - 105x - 525 + 120x = 0\)

\({x^2} + 20x - 525 = 0.\,\,\,\left( 1 \right)\)

Phương trình \(\left( 1 \right)\) có \(\Delta  = {20^2} - 4.\left( { - 525} \right) = 2\,\,500 > 0\) nên phương trình có hai nghiệm phân biệt

Câu 2

Phương trình \({x^2} - 7x + 12 = 0\) có tổng hai nghiệm là

Lời giải

Đáp án đúng là: B

Phương trình \({x^2} - 7x + 12 = 0\) có \(\Delta = {\left( { - 7} \right)^2} - 4.1.12 = 1 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{7 - 1}}{2};\,\,{x_2} = \frac{{7 + 1}}{2} = 4.\)

Vậy tổng hai nghiệm của phương trình là \(3 + 4 = 7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hai phương trình sau đây: \({x^2} - 6x + 8 = 0\,\,\,\left( 1 \right)\,;\,\,{x^2} + 2x - 3 = 0\,\,\,\left( 2 \right)\,.\) Khẳng định nào sau đây đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình \(9{x^2} - 30x + 25 = 0\) có nghiệm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

II. Thông hiểu

Nghiệm của phương trình \(2{x^2} - 5x + 2 = 0\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay