Câu hỏi:
07/11/2024 2,894
II. Thông hiểu
II. Thông hiểu
Hai vòi nước cùng chảy vào bể thì 6 giờ đầy bể. Nếu mỗi vòi chảy một mình cho đây bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 3 giờ. Nếu gọi thời gian vòi thứ nhất chảy một mình đầy bể là \(x\) (giờ) với \(x > 6.\) Phương trình của bài toán này là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là \(x\) (giờ) với \(x > 6.\)
Vì nều mỗi vòi chảy một mình cho đây bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 3 giờ nên thời gian vòi thứ hai chảy một mình đầy bể là \(x - 3\) (giờ)
Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{x}\) (bể)
Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{{x - 3}}\) (bể)
Trong \(1\) giờ, cả hai vòi chảy được \(\frac{1}{6}\) (bể)
Phương trình của bài toán là: \(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{1}{6}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Đổi \(20\) phút = \(\frac{1}{3}\) (giờ).
Gọi vận tốc dự định của bác An đi từ nhà đến nơi làm việc là \(x\)(km/h) \(\left( {x > 10} \right)\)
Thời gian bác An dự định đi từ nhà đến nơi làm việc là \(\frac{{60}}{x}\) (giờ).
Thời gian bác An đi trong \(\frac{1}{3}\) quãng đường đầu là \(\frac{{20}}{x}\) (giờ).
Thời gian bác An đi \(\frac{2}{3}\) quãng đường còn lại là \(\frac{{40}}{{x - 10}}\) (giờ).
Theo bài ra ta có phương trình:
\(\frac{{20}}{x} + \frac{{40}}{{x - 10}} = \frac{{60}}{x} + \frac{1}{3}\)
\(\frac{{40}}{{x - 10}} = \frac{{40}}{x} + \frac{1}{3}\)
\(40x \cdot 3 = 40 \cdot 3 \cdot \left( {x - 10} \right) + x\left( {x - 10} \right)\)
\(120x = 120x - 1200 + {x^2} - 10x\)
\({x^2} - 10x - 1200 = 0\)
Ta có \(\Delta ' = {\left( { - 5} \right)^2} - 1 \cdot \left( { - 1\,\,200} \right) = 1\,\,225\)
Suy ra phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{5 + \sqrt {1225} }}{1} = 40\) (thỏa mãn điều kiện); \({x_1} = \frac{{5 - \sqrt {1225} }}{1} = - 30\) (không thỏa mãn điều kiện)
Vậy vận tốc dự định của bác An khi đi từ nhà đến nơi làm việc là \(40\) km/h.
Lời giải
Đáp án đúng là: D
Gọi vận tốc của ca nô trong nước yên lặng là \(x\) (km/h) với \(x > 4\).
Vận tốc ca nô khi nước xuôi dòng là \(x + 4\) (km/h)
Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x + 4}}\) (h)
Vận tốc canô khi nước ngược dòng là \(x - 4\) (km/h)
Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x - 4}}\) (h)
Theo giả thiết ta có phương trình \(\frac{{48}}{{x + 4}} + \frac{{48}}{{x - 4}} = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.