Câu hỏi:

07/11/2024 622 Lưu

Hai đội công nhân làm chung một công việc thì hoàn thành sau \(12\) giờ, nếu làm riêng thì thời gian hoàn thành công việc của đội thứ hai ít hơn đội thứ nhất là \(7\)giờ. Hỏi nếu cần làm riêng thì thời gian để đội thứ nhất hoàn thành công việc là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Gọi thời gian đội thứ nhất làm một mình hoàn thành công việc là \(x\) (giờ) \(x > 12\)

Thời gian đội hai làm một mình xong công việc là \(x - 7\) (giờ)

Trong \(1\) giờ, đội một thứ nhất làm được \[\frac{1}{x}\] (công việc)

Đội thứ hai làm được \[\frac{1}{{x - 7}}\](công việc)

Cả hai đội làm được \[\frac{1}{{12}}\] (công việc)

Ta có phương trình: \(\frac{1}{x} + \frac{1}{{x - 7}} = \frac{1}{{12}}\)

\(12\left( {x - 7} \right) + 12x = x\left( {x - 7} \right)\)

\({x^2} - 31x + 84 = 0\)

Ta có \(\Delta = {\left( { - 31} \right)^2} - 4.1.\left( {84} \right) = 625\)

Suy ra phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{31 + \sqrt {625} }}{{2.1}} = 28\) (thỏa mãn điều kiện); \({x_1} = \frac{{31 - \sqrt {625} }}{{2.1}} = 3\) (không thỏa mãn điều kiện)

Vậy thời gian đội thứ nhất làm một mình hoàn thành công việc là \(28\) (giờ)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đổi \(20\) phút = \(\frac{1}{3}\) (giờ).

Gọi vận tốc dự định của bác An đi từ nhà đến nơi làm việc là \(x\)(km/h) \(\left( {x > 10} \right)\)

Thời gian bác An dự định đi từ nhà đến nơi làm việc là \(\frac{{60}}{x}\) (giờ).

Thời gian bác An đi trong \(\frac{1}{3}\) quãng đường đầu là \(\frac{{20}}{x}\) (giờ).

Thời gian bác An đi \(\frac{2}{3}\) quãng đường còn lại là \(\frac{{40}}{{x - 10}}\) (giờ).

Theo bài ra ta có phương trình:

\(\frac{{20}}{x} + \frac{{40}}{{x - 10}} = \frac{{60}}{x} + \frac{1}{3}\)

\(\frac{{40}}{{x - 10}} = \frac{{40}}{x} + \frac{1}{3}\)

\(40x \cdot 3 = 40 \cdot 3 \cdot \left( {x - 10} \right) + x\left( {x - 10} \right)\)

\(120x = 120x - 1200 + {x^2} - 10x\)

\({x^2} - 10x - 1200 = 0\)

Ta có \(\Delta ' = {\left( { - 5} \right)^2} - 1 \cdot \left( { - 1\,\,200} \right) = 1\,\,225\)

Suy ra phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{5 + \sqrt {1225} }}{1} = 40\) (thỏa mãn điều kiện); \({x_1} = \frac{{5 - \sqrt {1225} }}{1} = - 30\) (không thỏa mãn điều kiện)

Vậy vận tốc dự định của bác An khi đi từ nhà đến nơi làm việc là \(40\) km/h.

Lời giải

Đáp án đúng là: D

Gọi vận tốc của ca nô trong nước yên lặng là \(x\) (km/h) với \(x > 4\).

Vận tốc ca nô khi nước xuôi dòng là \(x + 4\) (km/h)

Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x + 4}}\) (h)

Vận tốc canô khi nước ngược dòng là \(x - 4\) (km/h)

Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x - 4}}\) (h)

Theo giả thiết ta có phương trình \(\frac{{48}}{{x + 4}} + \frac{{48}}{{x - 4}} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP